, 6:753 | Cite as

All-Optical Plasmonic Switches Based on Coupled Nano-disk Cavity Structures Containing Nonlinear Material



All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.


All-optical switch Surface plasmon Waveguide Photonic integrated circuits 



This work is supported by the grant (grant number M58040017) from Nanyang Technological University (NTU), Singapore. Support from the CNRS International-NTU-Thales Research Alliance (CINTRA) Laboratory, UMI 3288, Singapore 637553, is also acknowledged.


  1. 1.
    Barnes WL, Dereus A, Ebbsen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nature Photonics 4:83–91CrossRefGoogle Scholar
  3. 3.
    Zhao H, Guang X, Huang J (2008) Novel optical directional couplers based on surface plasmon polaritons. Physica E 40(10):3025–3209CrossRefGoogle Scholar
  4. 4.
    Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14(23):11318–11323CrossRefGoogle Scholar
  5. 5.
    Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17(26):24096–24101CrossRefGoogle Scholar
  6. 6.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  7. 7.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876CrossRefGoogle Scholar
  8. 8.
    Lin XS, Huang XG (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J Opt Soc Am B 26(7):1263–1268CrossRefGoogle Scholar
  9. 9.
    Tao J, Huang XG, Lin XS, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994CrossRefGoogle Scholar
  10. 10.
    Tao J, Huang XG, Lin XS, Chen JH, Zhang Q, Jin XP (2010) Systematical research on characteristics of double-side teeth-shaped nano-plasmonic waveguide filters. J Opt Soc Am B 27(2):323–327CrossRefGoogle Scholar
  11. 11.
    Yu N, Blanchard R, Fan J, Wang QJ, Plfugl C, Diehl L, Edamura T, Yamanishi M, Kan H, Capasso F (2008) Quantum cascade lasers with integrated plasmonic antenna-array collimators. Opt Express 16:19447CrossRefGoogle Scholar
  12. 12.
    Yu N, Wang QJ, Pflugl C, Diehl L, Capasso F, Edamura T, Furuta S, Yamanishi M, Kan H (2009) Semiconductor lasers with integrated plasmonic polarizer. Appl Phys Lett 94:151101CrossRefGoogle Scholar
  13. 13.
    Yu N, Kats M, Pflugl C, Geiser M, Wang QJ, Belkin MA, Capasso F, Fischer M, Wittmann A, Faist J, Edamura T, Furuta S, Yamanishi M, Kan H (2009) Multi-beam multi-wavelength semiconductor lasers. Appl Phys Lett 95:161108CrossRefGoogle Scholar
  14. 14.
    Yu N, Wang QJ, Kats MA, Fan JA, Khanna SP, Li L, Davies AG, Linfield EH, Capasso F (2010) Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater 9:730–735CrossRefGoogle Scholar
  15. 15.
    Lereu AL, Passian A, Goudonnet JP, Thundat T, Ferrell TL (2005) Optical modulation processes in thin films based on thermal effects of surface plasmons. Appl Phys Lett 86:154101CrossRefGoogle Scholar
  16. 16.
    Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonic 1:402–406CrossRefGoogle Scholar
  17. 17.
    Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA (2008) Electroopt modulation in thin film barium titanate plasmonic interferometers. Nano Lett 8:4048–4052CrossRefGoogle Scholar
  18. 18.
    Hsiao KS, Zheng YB, Juluri BK, Huang TJ (2008) Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystal. Adv Mater 20:3528–3532CrossRefGoogle Scholar
  19. 19.
    Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8(5):1506–1510CrossRefGoogle Scholar
  20. 20.
    Wurtz GA, Zayats AV (2008) Nonlinear surface plasmon polariton polaritonic crystal. Laser Photon Rev 2:125–135CrossRefGoogle Scholar
  21. 21.
    Liu YM, Bartal G, Genov DA, Zhang X (2007) Subwavelength discrete solitons in nolinear metamaterials. Phys Rev Lett 99:153901CrossRefGoogle Scholar
  22. 22.
    Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402CrossRefGoogle Scholar
  23. 23.
    Porto JA, Moreno LM, Garcia-Vidal FJ (2004) Optical bistability in subwavelength slit apertures containing nonlinear media. Phys Rev B 70:081402CrossRefGoogle Scholar
  24. 24.
    Schilders WHA, Ciarlet PG, Linons J, Maten EJWT. Numerical Methods in Electromagnetics (Elsevier, 2005). In this paper a commercial software Lumerical FDTD solution is used for simulationGoogle Scholar
  25. 25.
    Palik ED. Handbook of Optical Constant of Solids (Academic, 1985)Google Scholar
  26. 26.
    Haus HA, Lai Y (1992) Theory of Cascaded Quarter wave shifted distributed feedback resonators. IEEE J Quantum Electron 28(1):205–213CrossRefGoogle Scholar
  27. 27.
    Chremmos I (2009) Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal. J Opt Soc Am A 26:2623–2633CrossRefGoogle Scholar
  28. 28.
    Liao HB, Xiao RF, Fu JS, Wang H, Wong KS, Wong GKL (1998) Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales. Opt Lett 23:388–390CrossRefGoogle Scholar
  29. 29.
    Al-hemyari K (1993) Ultrafast all-optical switching in GaAlAs directional couplers at 1.55 μm without multiphoton absorption. Appl Phys Lett 63(36):3562CrossRefGoogle Scholar
  30. 30.
    Andreas A (2010) Reiserer, Jer-Shing Huang, Bert Hecht, and Tobias Brixner, Subwavelength broadband splitters and switches for femtosecond plasmonic signals, Opt Express 18:11810–11820CrossRefGoogle Scholar
  31. 31.
    Plum E, Fedotov VA, Kuo P, Tsai DP, Zheludev NI (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17(10):8548CrossRefGoogle Scholar
  32. 32.
    Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226806CrossRefGoogle Scholar
  33. 33.
    Dubinov A, Aleshkin VY, Mitin V, Otsuji T, Ryzhii V (2011) Terahertz surface plasmons in optical pumped graphene structures. J Phys Condens Matter 23:145302CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Microelectronics, School of Electrical and Electronic EngineeringNanyang Technological UniversityNanyangSingapore
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversityNanyangSingapore
  3. 3.Key laboratory of Photonic Information Technology of Guangdong Higher Education InstitutesSouth China Normal UniversityGuangzhouChina

Personalised recommendations