Plasmonics

, 6:637

Improved Description of the Plasmon Resonance Wavelength Shift in Metallic Nanoparticle Pairs

Article

Abstract

We propose to use the compressed or stretched hyperbola for an efficient description of the plasmon resonance shift as a function of the gap between proximal nanoparticles in arrays of gold pairs. This function overcomes the limitation of describing this behavior by the well-known exponential function as it accounts for the near-field coupling and the far-field radiative coupling between particles . It has the advantage of mathematical simplicity with one dimensionless additional parameter compared to a simple exponential decay. We suggest that this parameter may be the signature of the grating effects. Most importantly this function works well in a wide variety of surrounding media and for nanostructures with arbitrary shapes. We expect that this function is an efficient tool for fundamental studies as it quantifies both the near-field coupling and the grating coupling. It is also a useful tool for applied studies like bio-sensing applications, by providing an improved plasmon ruler equation. Localized surface plasmon resonances in gold pairs are investigated using finite-difference time-domain simulations.

Keywords

Nanoparticles FDTD Plasmon resonance 

References

  1. 1.
    Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M (2005) Nano Lett 5:1065CrossRefGoogle Scholar
  2. 2.
    Haynes CL, McFarland AD, Zhao L, Duyne RPV, Schatz GC (2003) J Phys Chem B 107:7337CrossRefGoogle Scholar
  3. 3.
    Félidj N, Aubard J, Lévi G, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Phys Rev B 66:245407CrossRefGoogle Scholar
  4. 4.
    Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Phys Rev Lett 84:4721CrossRefGoogle Scholar
  5. 5.
    Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) J Appl Phys 90:3825CrossRefGoogle Scholar
  6. 6.
    Romero I, Aizpurua J, Bryant GW, de Abajo FJG (2006) Opt Express 14:9988CrossRefGoogle Scholar
  7. 7.
    Pecharroman C (2009) Phys Chem Chem Phys 11:5922CrossRefGoogle Scholar
  8. 8.
    Davis TJ, Vernon KC, Gomez DE (2009) Phys Rev B 79:155423CrossRefGoogle Scholar
  9. 9.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. In: Springer series in materials science, vol 25. Springer, BerlinGoogle Scholar
  10. 10.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Opt Commun 220:137CrossRefGoogle Scholar
  11. 11.
    Jain PK, Huang W, El-Sayed MA (2007) Nano Lett 7:2080CrossRefGoogle Scholar
  12. 12.
    Jain PK, El-Sayed MA (2008) Nano Lett 8:4347CrossRefGoogle Scholar
  13. 13.
    Huang W, Qian W, Jain PK, El-Sayed MA (2007) Nano Lett 7:3227CrossRefGoogle Scholar
  14. 14.
    Jain KP, El-Sayed MA (2007) Nano Lett 7:2854CrossRefGoogle Scholar
  15. 15.
    Tabor C, Mahmoud RMM, El-Sayed M (2009) J Chem A 113:1946Google Scholar
  16. 16.
    Jain PK, El-Sayed MA (2008) J Phys Chem C 112:4954CrossRefGoogle Scholar
  17. 17.
    Su KH, Wei QH, Zhang X (2003) Nano Lett 3:1087CrossRefGoogle Scholar
  18. 18.
    Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Nano Lett 5:2246CrossRefGoogle Scholar
  19. 19.
    Maier SA, Brongersma ML, Kik PG, Atwater HA (2002) Phys Rev B 65:193408CrossRefGoogle Scholar
  20. 20.
    Su KH, Wei QH, Zhang JX, Mock J, Smith DR, Schultz S (2003) Nano Lett 3:1087CrossRefGoogle Scholar
  21. 21.
    Dridi M, Vial A (2010) J Phys D Appl Phys 43:415102CrossRefGoogle Scholar
  22. 22.
    Whitehead L, Whitehead R, Valeur B, Berberan-Santos M (2009) Am J Phys 77:173CrossRefGoogle Scholar
  23. 23.
    Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time domain method, 2nd edn. Artech, BostonGoogle Scholar
  24. 24.
    Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FJ (2003) Phys Rev Lett 90:057401CrossRefGoogle Scholar
  25. 25.
    Banaee MG, Crozier KB (2010) Opt Lett 35:760CrossRefGoogle Scholar
  26. 26.
    Jackel F, Kinkhabwala AA, Moerner WE (2007) Chem Phys Lett 446:339CrossRefGoogle Scholar
  27. 27.
    Dridi M, Vial A (2009) Opt Lett 34:2652CrossRefGoogle Scholar
  28. 28.
    Dridi M, Vial A (2010) J Phys Chem C 114:9541CrossRefGoogle Scholar
  29. 29.
    Meier M, Wokaun A, Liao PF (1985) J Opt Soc Am B 2:931CrossRefGoogle Scholar
  30. 30.
    Kravets VG, Schedin F, Grigorenko AN (2008) Phys Rev Lett 101:087403CrossRefGoogle Scholar
  31. 31.
    Auguié B, Barnes WL (2008) Phys Rev Lett 101:143902CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut Charles Delaunay, CNRS UMR 6279, Laboratoire de Nanotechnologie et d’Instrumentation OptiqueUniversité de Technologie de TroyesTroyes CedexFrance
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations