Plasmonics

, Volume 6, Issue 3, pp 515–519

Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering

  • Mingfang Yi
  • Douguo Zhang
  • Pei Wang
  • Xiaojin Jiao
  • Steve Blair
  • Xiaolei Wen
  • Qiang Fu
  • Yonghua Lu
  • Hai Ming
Article

Abstract

The plasmonic interaction between silver nano-cubes and a silver ground plane with and without a dielectric spacer is studied for surface-enhanced Raman scattering (SERS) for rhodamine 6G (R6G) molecules absorbed onto the silver nano-cubes. Experimental results show that the composite substrates made from silver nano-cubes and the silver ground plane produce a stronger SERS signal than by the cubes alone, due to the plasmonic interaction between the cubes and the film. Numerical simulation is used to verify the plasmonic enhancement of the composite substrate and is consistent with the experimental results. The lowest concentration of R6G molecules which can be detected with the composite substrate is about 10−11 M with our setup.

Keywords

Plasmonic interaction Surface-enhanced Raman scattering (SERS) Local electromagnetic field 

References

  1. 1.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163CrossRefGoogle Scholar
  2. 2.
    Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489CrossRefGoogle Scholar
  3. 3.
    Chen CY, Burstein E (1980) Giant Raman scattering by molecules at metal-island films. Phys Rev Lett 45:1287–1291CrossRefGoogle Scholar
  4. 4.
    Chang RK, Furtak TE (1982) Surface-enhanced Raman scattering. Plenum, New YorkGoogle Scholar
  5. 5.
    Otto A (1991) Surface-enhanced Raman scattering of adsorbates. J Raman Spectrosc 22:743–752CrossRefGoogle Scholar
  6. 6.
    Jeanmaire DL, van Duyne RP (1977) Surface raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  7. 7.
    Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 75:790CrossRefGoogle Scholar
  8. 8.
    Liao PF, Bergman JG, Chemla DS, Wokaun A, Melngailis J, Hawryluk AM, Economou NP (1981) Surface-enhanced raman scattering from microlithographic silver particle surface. Chem Phys Lett 82:355CrossRefGoogle Scholar
  9. 9.
    Freeman RG, Garbar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walker DG, Natan MJ (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629CrossRefGoogle Scholar
  10. 10.
    Makiabadi T, Bouvrée A, Nader VL, Terrisse H, Louarn G (2010) Preparation, optimization, and characterization of SERS sensor substrates based on two-dimensional structures of gold colloid. Plasmonics 5:21–29CrossRefGoogle Scholar
  11. 11.
    Félidj N, Aubard J, Lévi G, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Phys Rev B 66:245407CrossRefGoogle Scholar
  12. 12.
    Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65:075419CrossRefGoogle Scholar
  13. 13.
    Duan G, Cai W et al (2006) Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. Appl Phys Lett 89(18):181918CrossRefGoogle Scholar
  14. 14.
    Skrabalak SE, Au L, Li XD, Xia YN (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182–2190CrossRefGoogle Scholar
  15. 15.
    Shi C, Yan H, Claire Gu, Ghosh D, Seballos L, Chen S, Zhang JZ, Chen B (2008) A double substrate “sandwich” structure for fiber surface enhanced Raman scattering detection. Appl Phys Lett 92:103107CrossRefGoogle Scholar
  16. 16.
    Palik ED (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  17. 17.
    Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939CrossRefGoogle Scholar
  18. 18.
    Byun KM, Kim SJ, Kim D (2005) Design study of highly sensitive nanowire enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. Opt Express 13:3737–3742CrossRefGoogle Scholar
  19. 19.
    Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097CrossRefGoogle Scholar
  20. 20.
    Leveque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14(21):9971–9981CrossRefGoogle Scholar
  21. 21.
    Suzukia M, Imaia Y, Tokunagaa H, Nakajimaa K, Kimuraa K, Fukuokab T, Moric Y (2009) Tailoring coupling of light to local plasmons by using Ag nanorods structured dielectric mirror sandwiches. J Nanophotonics 3:031502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mingfang Yi
    • 1
    • 2
  • Douguo Zhang
    • 1
  • Pei Wang
    • 1
  • Xiaojin Jiao
    • 3
  • Steve Blair
    • 3
  • Xiaolei Wen
    • 1
  • Qiang Fu
    • 1
  • Yonghua Lu
    • 1
  • Hai Ming
    • 1
  1. 1.Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Anqing Teachers CollegeAnqingPeople’s Republic of China
  3. 3.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations