, 6:491 | Cite as

A Review on Functionalized Gold Nanoparticles for Biosensing Applications

  • Shuwen Zeng
  • Ken-Tye Yong
  • Indrajit Roy
  • Xuan-Quyen Dinh
  • Xia Yu
  • Feng Luan


Nanoparticle technology plays a key role in providing opportunities and possibilities for the development of new generation of sensing tools. The targeted sensing of selective biomolecules using functionalized gold nanoparticles (Au NPs) has become a major research thrust in the last decade. Au NP-based sensors are expected to change the very foundations of sensing and detecting biomolecules. In this review, we will discuss the use of surface functionalized Au NPs for smart sensor fabrication leading to detection of specific biomolecules and heavy metal ions.


Surface plasmon resonance Gold nanoparticles Biosensing Surface functionalization 


  1. 1.
    Schmid G (ed) (1994) Clusters and colloids—from theory to applications. VCH, WeinheimGoogle Scholar
  2. 2.
    Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237CrossRefGoogle Scholar
  3. 3.
    Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225CrossRefGoogle Scholar
  4. 4.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  5. 5.
    Krug JT, Wang GD, Emory SR, Nie SM (1999) Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 121(39):9208–9214CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Lorenzo L, Alvarez-Puebla RA, de Abajo FJG, Liz-Marzan LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340CrossRefGoogle Scholar
  7. 7.
    Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefGoogle Scholar
  8. 8.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  9. 9.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493CrossRefGoogle Scholar
  10. 10.
    Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111(40):14664–14669CrossRefGoogle Scholar
  11. 11.
    Kubo R (1962) Electronic properties of metallic fine particles 1. J Phys Soc Jpn 17(6):975–986CrossRefGoogle Scholar
  12. 12.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217CrossRefGoogle Scholar
  13. 13.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426CrossRefGoogle Scholar
  14. 14.
    Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 25(3):377–445CrossRefGoogle Scholar
  15. 15.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications—I. Theory. Anal Biochem 262(2):137–156CrossRefGoogle Scholar
  16. 16.
    El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264CrossRefGoogle Scholar
  17. 17.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRefGoogle Scholar
  18. 18.
    Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76(18):5370–5378CrossRefGoogle Scholar
  19. 19.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250CrossRefGoogle Scholar
  20. 20.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  21. 21.
    Emory SR, Nie S (1998) Screening and enrichment of metal nanoparticles with novel optical properties. J Phys Chem B 102(3):493–497CrossRefGoogle Scholar
  22. 22.
    Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101(36):7033–7037CrossRefGoogle Scholar
  23. 23.
    Maye MM, Zheng WX, Leibowitz FL, Ly NK, Zhong CJ (2000) Heating-induced evolution of thiolate-encapsulated gold nanoparticles: a strategy for size and shape manipulations. Langmuir 16(2):490–497CrossRefGoogle Scholar
  24. 24.
    Martin MN, Basham JI, Chando P, Eah SK (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26(10):7410–7417CrossRefGoogle Scholar
  25. 25.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179CrossRefGoogle Scholar
  26. 26.
    Henglein A, Meisel D (1998) Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14(26):7392–7396CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Wang CY, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11(9):2310–2312CrossRefGoogle Scholar
  28. 28.
    Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649CrossRefGoogle Scholar
  29. 29.
    Hu JQ, Zhang Y, Liu B, Liu JX, Zhou HH, Xu YF, Jiang YX, Yang ZL, Tian ZQ (2004) Synthesis and properties of tadpole-shaped gold nanoparticles. J Am Chem Soc 126(31):9470–9471CrossRefGoogle Scholar
  30. 30.
    Kuo CH, Chiang TF, Chen LJ, Huang MH (2004) Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate. Langmuir 20(18):7820–7824CrossRefGoogle Scholar
  31. 31.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  32. 32.
    Frens G (1972) Particle-size and sol stability in metal colloids. Kolloid-Z Z Polym 250(7):736–741CrossRefGoogle Scholar
  33. 33.
    Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature-Physical Science 241(105):20–22Google Scholar
  34. 34.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707CrossRefGoogle Scholar
  35. 35.
    Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043CrossRefGoogle Scholar
  36. 36.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanopaticles in a 2-phase liquid–liquid system. J Chem Soc, Chem Commun 7:801–802CrossRefGoogle Scholar
  37. 37.
    Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc, Chem Commun 16:1655–1656CrossRefGoogle Scholar
  38. 38.
    Porter LA, Ji D, Westcott SL, Graupe M, Czernuszewicz RS, Halas NJ, Lee TR (1998) Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides. Langmuir 14(26):7378–7386CrossRefGoogle Scholar
  39. 39.
    Foos EE, Snow AW, Twigg ME, Ancona MG (2002) Thiol-terminated Di-, Tri-, and tetraethylene oxide functionalized gold nanoparticles: a water-soluble, charge-neutral cluster. Chem Mater 14(5):2401–2408CrossRefGoogle Scholar
  40. 40.
    Sudeep PK, Ipe BI, Thomas KG, George MV, Barazzouk S, Hotchandani S, Kamat PV (2002) Fullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2(1):29–35CrossRefGoogle Scholar
  41. 41.
    Thomas KG, Kamat PV (2003) Chromophore-functionalized gold nanoparticles. Acc Chem Res 36(12):888–898CrossRefGoogle Scholar
  42. 42.
    Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57CrossRefGoogle Scholar
  43. 43.
    Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2(1):113–123CrossRefGoogle Scholar
  44. 44.
    Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393CrossRefGoogle Scholar
  45. 45.
    Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786CrossRefGoogle Scholar
  46. 46.
    Aslam M, Fu L, Su M, Vijayamohanan K, Dravid VP (2004) Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J Mater Chem 14(12):1795–1797CrossRefGoogle Scholar
  47. 47.
    Kim KS, Demberelnyamba D, Lee H (2004) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20(3):556–560CrossRefGoogle Scholar
  48. 48.
    Malikova N, Pastoriza-Santos I, Schierhorn M, Kotov NA, Liz-Marzan LM (2002) Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir 18(9):3694–3697CrossRefGoogle Scholar
  49. 49.
    Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J Am Chem Soc 123(34):8226–8230CrossRefGoogle Scholar
  50. 50.
    Huang HZ, Yang XR (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339(15):2627–2631CrossRefGoogle Scholar
  51. 51.
    Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126(23):7176–7177CrossRefGoogle Scholar
  52. 52.
    Aldaye FA, Sleiman HF (2006) Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew Chem Int Ed 45(14):2204–2209CrossRefGoogle Scholar
  53. 53.
    Huang YF, Lin YW, Lin ZH, Chang HT (2009) Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res 11(4):775–783CrossRefGoogle Scholar
  54. 54.
    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650Google Scholar
  55. 55.
    Mei SHJ, Liu ZJ, Brennan JD, Li YF (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J Am Chem Soc 125(2):412–420CrossRefGoogle Scholar
  56. 56.
    Gearheart LA, Ploehn HJ, Murphy CJ (2001) Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA. J Phys Chem B 105(50):12609–12615CrossRefGoogle Scholar
  57. 57.
    Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039CrossRefGoogle Scholar
  58. 58.
    Li HX, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76(18):5414–5417CrossRefGoogle Scholar
  59. 59.
    Liu JW, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76(6):1627–1632CrossRefGoogle Scholar
  60. 60.
    Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45(1):90–94CrossRefGoogle Scholar
  61. 61.
    Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822CrossRefGoogle Scholar
  62. 62.
    Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRefGoogle Scholar
  63. 63.
    Wang DY, Lai BHY, Feldman AR, Sen D (2002) A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Res 30(8):1735–1742CrossRefGoogle Scholar
  64. 64.
    Wark AW, Lee HJ, Qavi AJ, Corn RM (2007) Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal Chem 79(17):6697–6701CrossRefGoogle Scholar
  65. 65.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081CrossRefGoogle Scholar
  66. 66.
    Mariotti E, Minunni M, Mascini M (2002) Surface plasmon resonance biosensor for genetically modified organisms detection. Anal Chim Acta 453(2):165–172CrossRefGoogle Scholar
  67. 67.
    Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72(22):5535–5541CrossRefGoogle Scholar
  68. 68.
    Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78(18):6332–6339CrossRefGoogle Scholar
  69. 69.
    Huang CC, Huang YF, Cao ZH, Tan WH, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77(17):5735–5741CrossRefGoogle Scholar
  70. 70.
    Matsubara K, Kawata S, Minami S (1988) Optical chemical sensor based on surface-plasmon measurement. Appl Opt 27(6):1160–1163CrossRefGoogle Scholar
  71. 71.
    Zhang LM, Uttamchandani D (1988) Optical chemical sensing employing surface-plasmon resonance. Electron Lett 24(23):1469–1470CrossRefGoogle Scholar
  72. 72.
    Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63CrossRefGoogle Scholar
  73. 73.
    Liedberg B, Nylander C, Lundstrom I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sens Actuators 4(2):299–304Google Scholar
  74. 74.
    Spadavecchia J, Manera MG, Quaranta F, Siciliano P, Rella R (2005) Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens Bioelectron 21(6):894–900CrossRefGoogle Scholar
  75. 75.
    Margheri G, Giorgetti E, Sottini S, Toci G (2003) Nonlinear characterization of nanometer-thick dielectric layers by surface plasmon resonance techniques. J Opt Soc Am B: Opt Phys 20(4):741–751CrossRefGoogle Scholar
  76. 76.
    Ho HP, Wu SY, Yang M, Cheung AC (2001) Application of white light-emitting diode to surface plasmon resonance sensors. Sens Actuators, B 80(2):89–94CrossRefGoogle Scholar
  77. 77.
    Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin AV (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15(4):1745–1754CrossRefGoogle Scholar
  78. 78.
    Law WC, Markowicz P, Yong KT, Roy I, Baev A, Patskovsky S, Kabashin AV, Ho HP, Prasad PN (2007) Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens Bioelectron 23(5):627–632CrossRefGoogle Scholar
  79. 79.
    Law WC, Yong KT, Baev A, Hu R, Prasad PN (2009) Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt Express 17(21):19041–19046CrossRefGoogle Scholar
  80. 80.
    Matsui J, Akamatsu K, Hara N, Miyoshi D, Nawafune H, Tamaki K, Sugimoto N (2005) SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem 77(13):4282–4285CrossRefGoogle Scholar
  81. 81.
    Ding L, Hao C, Xue YD, Ju HX (2007) A bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules 8(4):1341–1346CrossRefGoogle Scholar
  82. 82.
    Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385CrossRefGoogle Scholar
  83. 83.
    Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103(5):1215–1220CrossRefGoogle Scholar
  84. 84.
    Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509CrossRefGoogle Scholar
  85. 85.
    Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74(7):1624–1628CrossRefGoogle Scholar
  86. 86.
    Ahirwal GK, Mitra CK (2010) Gold nanoparticles based sandwich electrochemical immunosensor. Biosens Bioelectron 25(9):2016–2020CrossRefGoogle Scholar
  87. 87.
    Xiang CL, Zou YJ, Sun LX, Xu F (2008) Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem Commun 10(1):38–41CrossRefGoogle Scholar
  88. 88.
    Darbha GK, Singh AK, Rai US, Yu E, Yu HT, Ray PC (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130(25):8038–8043CrossRefGoogle Scholar
  89. 89.
    Huang KW, Yu CJ, Tseng WL (2010) Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosens Bioelectron 25(5):984–989CrossRefGoogle Scholar
  90. 90.
    Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305CrossRefGoogle Scholar
  91. 91.
    Slocik JM, Zabinski JS, Phillips DM, Naik RR (2008) Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4(5):548–551CrossRefGoogle Scholar
  92. 92.
    Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125(22):6642–6643CrossRefGoogle Scholar
  93. 93.
    Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20(17):3263–3267CrossRefGoogle Scholar
  94. 94.
    Chai F, Wang CA, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2(5):1466–1470CrossRefGoogle Scholar
  95. 95.
    Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT (2008) Detection of mercury(II) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun 19:2242–2244CrossRefGoogle Scholar
  96. 96.
    Lee JS, Mirkin CA (2008) Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem 80(17):6805–6808CrossRefGoogle Scholar
  97. 97.
    Wilson GS, Hu YB (2000) Enzyme based biosensors for in vivo measurements. Chem Rev 100(7):2693–2704CrossRefGoogle Scholar
  98. 98.
    Zhang SX, Wang N, Yu HJ, Niu YM, Sun CQ (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67(1):15–22CrossRefGoogle Scholar
  99. 99.
    Zen JM, Kumar AS, Chung CR (2003) A glucose biosensor employing a stable artificial peroxidase based on ruthenium purple anchored cinder. Anal Chem 75(11):2703–2709CrossRefGoogle Scholar
  100. 100.
    Battaglini F, Bartlett PN, Wang JH (2000) Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose. Anal Chem 72(3):502–509CrossRefGoogle Scholar
  101. 101.
    Mano N, Heller A (2005) Detection of glucose at 2 fM concentration. Anal Chem 77(2):729–732CrossRefGoogle Scholar
  102. 102.
    Lawrence NS, Deo RP, Wang J (2004) Biocatalytic carbon paste sensors based on a mediator pasting liquid. Anal Chem 76(13):3735–3739CrossRefGoogle Scholar
  103. 103.
    Jena BK, Raj CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12(10):2702–2708CrossRefGoogle Scholar
  104. 104.
    Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22(6):838–844CrossRefGoogle Scholar
  105. 105.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562CrossRefGoogle Scholar
  106. 106.
    Astruc D, Daniel MC, Ruiz J (2004) Dendrimers and gold nanoparticles as exo-receptors sensing biologically important anions. Chem Commun 23:2637–2649CrossRefGoogle Scholar
  107. 107.
    Sanz VC, Mena ML, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes—application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528(1):1–8CrossRefGoogle Scholar
  108. 108.
    Chen SJ, Chang HT (2004) Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem 76(13):3727–3734CrossRefGoogle Scholar
  109. 109.
    Jemal A, Siegel R, Ward E, Hao YP, Xu JQ, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96CrossRefGoogle Scholar
  110. 110.
    Cutler DM (2008) Are we finally winning the war on cancer? J Econ Perspect 22(4):3–26CrossRefGoogle Scholar
  111. 111.
    Banerjee AK, Rabbitts PH, George J (2003) Lung cancer center dot 3: fluorescence bronchoscopy: clinical dilemmas and research opportunities. Thorax 58(3):266–271CrossRefGoogle Scholar
  112. 112.
    Oneill HJ, Gordon SM, Oneill MH, Gibbons RD, Szidon JP (1988) A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin Chem 34(8):1613–1618Google Scholar
  113. 113.
    Yu H, Xu L, Cao MF, Chen X, Wang P, Jiao JW, Wang YL, IEEE (2003) Detection volatile organic compounds in breath as markers of lung cancer using a novel electronic nose. Proc IEEE Sens 1 and 2:1333–1337Google Scholar
  114. 114.
    Phillips M, Gleeson K, Hughes JMB, Greenberg J, Cataneo RN, Baker L, McVay WP (1999) Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. Lancet 353(9168):1930–1933CrossRefGoogle Scholar
  115. 115.
    Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673CrossRefGoogle Scholar
  116. 116.
    Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, Mattoussi H (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett 7(10):3157–3164CrossRefGoogle Scholar
  117. 117.
    Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal Chem 74(9):2217–2223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shuwen Zeng
    • 1
    • 3
    • 4
  • Ken-Tye Yong
    • 1
  • Indrajit Roy
    • 2
  • Xuan-Quyen Dinh
    • 3
  • Xia Yu
    • 4
  • Feng Luan
    • 1
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of ChemistryUniversity of DelhiDelhiIndia
  3. 3.CINTRA CNRS/NTU/THALES UMI 3288SingaporeSingapore
  4. 4.Singapore Institute of Manufacturing TechnologySingaporeSingapore

Personalised recommendations