Plasmonics

, Volume 6, Issue 2, pp 413–418 | Cite as

Enhanced Raman Scattering of Ultramarine on Au-coated Ge/Si-nanostructures

  • Elena Klyachkovskaya
  • Natalia Strekal
  • Inna Motevich
  • Svetlana Vaschenko
  • Anna Harbachova
  • Mikhail Belkov
  • Sergey Gaponenko
  • Christian Dais
  • Hans Sigg
  • Toma Stoica
  • Detlev Grützmacher
Article

Abstract

Semiconductor self-assembled Ge-on-Si quantum dot structures coated with Au film were successfully employed as surface-enhanced Raman scattering (SERS) substrates to characterize ultramarine blue inorganic art pigment. To assign the bands and to reveal the enhancement mechanisms, the quantum-chemical calculations of vibration spectra of linear and cyclic model compound of SiO4 and AlO4 tetrahedra were carried out. The overtones are observed in the SERS spectra and the unharmonicity constants were estimated. The development of a series of new bands in SERS spectra of ultramarine are discussed in terms of electro-optical unharmonicity.

Keywords

Surface-enhanced Raman scattering Self-organized Ge/Si nanostructures Au film Ultramarine Overtones Unharmonicity constants 

References

  1. 1.
    Seel F (1984) Sulphur in artwork: lapis lazuli and ultramarine pigments. Stud Inorg Chem 5:67–89Google Scholar
  2. 2.
    Osticioli I, Mendesa NFC, Nevinc A, Gil FPSC, Becuccia M, Castellucci E (2009) Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta A 73(3):525–531CrossRefGoogle Scholar
  3. 3.
    Burrafato G, Calabrese M, Cosentino A, Gueli AM, Troja SO, Zuccarello A (2004) ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J Raman Spectrosc 35(10):879–886CrossRefGoogle Scholar
  4. 4.
    Clark RJH, van der Weed J (2004) Identification of pigments and gemstones on the Tours Gospel: the early 9th century Carolingian palette. J Raman Spectrosc 35(4):279–283CrossRefGoogle Scholar
  5. 5.
    Striova J, Lofrumento C, Zoppi A, Castellucci M (2006) Prehistoric Anasazi ceramics studied by micro-Raman spectroscopy. J Raman Spectrosc 37(10):1139–1145CrossRefGoogle Scholar
  6. 6.
    Galli S, Mastelloni M, Ponterio R, Triscari M (2004) Raman and scanning electron microscopy and energy-dispersive x-ray techniques for the characterization of colouring and opaquening agents in Roman mosaic glass tesserae. J Raman Spectrosc 35(8–9):622–627CrossRefGoogle Scholar
  7. 7.
    Welter N, Schussler U, Kiefer W (2007) Characterisation of inorganic pigments in ancient glass beads by means of Raman microspectroscopy, microprobe analysis and X-ray diffractometry. J Raman Spectrosc 38(1):113–121CrossRefGoogle Scholar
  8. 8.
    Clark RJH, Franks ML (1975) The resonance Raman spectrum of ultramarine blue. Chem Phys Lett 34(1):69–72CrossRefGoogle Scholar
  9. 9.
    Gobeltz N, Demortier A, Lelieur JP, Duhayon C (1998) Correlation between EPR, Raman and colorimetric characteristics of the blue ultramarine pigments. J Chem Soc Faraday Trans 94(5):677–681CrossRefGoogle Scholar
  10. 10.
    Bacci M, Cucci C, Federico ED, Ienco A, Jerschow A, Newman JM, Picollo M (2009) An integrated spectroscopic approach for the identification of what distinguishes Afghan lapis lazuli from others. Vib Spectrosc 49(1):80–83CrossRefGoogle Scholar
  11. 11.
    Schmidt CM, Walton MS, Trentelman K (2009) Characterization of lapis lazuli pigments using a multitechnique analytical approach: implications for identification and geological provenancing. Anal Chem 81(20):8513–8518CrossRefGoogle Scholar
  12. 12.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRefGoogle Scholar
  13. 13.
    Kneipp K, Moskovits M, Kneipp H (2006) Surface-enhanced Raman scattering. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975CrossRefGoogle Scholar
  15. 15.
    Gaponenko SV, Guzatov DV (2009) Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy. Chem Phys Lett 477(4–6):411–414CrossRefGoogle Scholar
  16. 16.
    Gaponenko SV (2010) Introduction to nanophotonics. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Leona M, Lombardi JR (2007) Identification of berberine in ancient and historical textiles by surface-enhanced Raman scattering. J Raman Spectrosc 38(7):853–858CrossRefGoogle Scholar
  18. 18.
    Chen K, Leona M, Vo-Dinh T (2007) Surface-enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sens Rev 27(2):109–120CrossRefGoogle Scholar
  19. 19.
    Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37(10):981–992CrossRefGoogle Scholar
  20. 20.
    Lau D, Livett M, Prawer S (2008) Application of surface-enhanced Raman spectroscopy (SERS) to the analysis of natural resins in artworks. J Raman Spectrosc 39(4):545–552CrossRefGoogle Scholar
  21. 21.
    Whitney AV, Casadio F, Van Duyne RP (2007) Identification and characterization of artists' red dyes and their mixtures by surface-enhanced Raman spectroscopy. Appl Spectrosc 61(9):994–1000CrossRefGoogle Scholar
  22. 22.
    Brosseau CL, Rayner KS, Casadio F, Crzywacz CM, Van Duyne RP (2009) Surface-enhanced Raman spectroscopy: a direct method to identify colorants in various artist media. Anal Chem 81(17):7443–7447CrossRefGoogle Scholar
  23. 23.
    Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. Part 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 81:1–20CrossRefGoogle Scholar
  24. 24.
    Albrecht MA, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  25. 25.
    Moscovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  26. 26.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  27. 27.
    Strekal N, Maskevich S, Maskevich A, Jardillier J-C, Nabiev I (2000) Selective enhancement of Raman or fluorescence spectra of biomolecules using specifically annealed thick gold films. Biopolymers 57(6):325–328CrossRefGoogle Scholar
  28. 28.
    Gaponenko SV, Gaiduk AA, Kulakovich OS, Maskevich SA, Strekal ND, Prokhorov OA, Shelekhina VM (2001) Raman scattering enhancement using crystallographic surface of a colloidal crystal. JETP Lett 74(6):309–313CrossRefGoogle Scholar
  29. 29.
    Shadi IT, Chowdhry BZ, Snowden MJ, Withnall R (2004) Semi-quantitative analysis of alizarin and purpurin by surface-enhanced resonance Raman spectroscopy (SERRS) using silver colloids. J Raman Spectrosc 35(8/9):800–807CrossRefGoogle Scholar
  30. 30.
    Stoica T, Shushunova V, Dais C, Solak H, Grutzmacher D (2007) Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates. Nanotechnology 18:455307Google Scholar
  31. 31.
    Baranov AV, Fedorov AV, Perova TS, Moore RA, Yam V, Bouchier D, Le Thanh V, Berwick K (2006) Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman Spectroscopy. Phys Rev B 73:075322CrossRefGoogle Scholar
  32. 32.
    Jin G, Tang YS, Liu JL, Wang KL (1999) Growth and study of self-organized Ge quantum wires on Si(111) substrates. Appl Phys Lett 74(17):2471–2473CrossRefGoogle Scholar
  33. 33.
    Colomban P (2003) Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics. J Non-Crystalline Solids 323(1–3):180–187CrossRefGoogle Scholar
  34. 34.
    Gaponenko SV (2002) Effects of photon density of states on Raman scattering in mesoscopic structures. Phys Rev B 65:140303(R)CrossRefGoogle Scholar
  35. 35.
    Goulet PJG, Pieczomka NPW, Aroca RF (2003) Overtones and combinations in single-molecule surface-enhanced resonance Raman scattering spectra. Anal Chem 75(8):1918–1923CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elena Klyachkovskaya
    • 1
  • Natalia Strekal
    • 2
  • Inna Motevich
    • 2
  • Svetlana Vaschenko
    • 1
  • Anna Harbachova
    • 1
  • Mikhail Belkov
    • 1
  • Sergey Gaponenko
    • 1
  • Christian Dais
    • 3
  • Hans Sigg
    • 3
  • Toma Stoica
    • 4
  • Detlev Grützmacher
    • 4
  1. 1.B.I. Stepanov Institute of Physics NASBMinskBelarus
  2. 2.Yanka Kupala Grodno State UniversityGrodnoBelarus
  3. 3.Paul Scherrer InstitutVilligenSwitzerland
  4. 4.Institute of Bio- And NanosystemsJülichGermany

Personalised recommendations