, Volume 6, Issue 2, pp 345–349

On Optical Properties of Dilute Colloidal Gold

  • Ville Kontturi
  • Pertti Silfsten
  • Jukka Räty
  • Kai-Erik Peiponen


Wavelength-dependent complex effective refractive index of dilute colloidal gold, i.e., spherical gold nanoparticles in water was measured using a reflectometer and a spectrophotometer. The spectral data obtained was used for the calculation of the wavelength-dependent complex permittivity of the gold nanoparticle with the aid of the Maxwell Garnett effective medium model for the colloid. It is shown that the wavelength-dependent complex permittivity of gold nanoparticle is different from the complex permittivity of bulk gold. Furthermore, Smakula’s formula is introduced for the calculation of the relative concentration of gold nanoparticles embedded in liquid using absorption data of the colloid.


Noble metal Nanoparticles Surface plasmon resonance Complex permittivity Effective medium 


  1. 1.
    Maxwell-Garnett JC (1906) Colours in metal glasses, in metallic films, and in metallic solutions. Trans R Soc 205:385–420Google Scholar
  2. 2.
    Hunter RJ (1989) Foundations of colloid science vol. 1. Clarendon, OxfordGoogle Scholar
  3. 3.
    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, EnglandGoogle Scholar
  4. 4.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  5. 5.
    Haes AJ, Van Duyne P (2004) Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev Mol Diagn 4:527–537CrossRefGoogle Scholar
  6. 6.
    Urban GA (2009) Micro- and nanobiosensors—state of the art and trends. Meas. Sci, Technol, 20Google Scholar
  7. 7.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  8. 8.
    Jain PK et al (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Chem Phys B 110:7238–7248CrossRefGoogle Scholar
  9. 9.
    Scaffardi LB, Tocho JO (2006) Size dependence of refractive index of gold nanoparticles. Nanotechnology 17:1309CrossRefGoogle Scholar
  10. 10.
    Kubo S, Diaz A, Tan Y, Mayer TS, Koon IC, Mallouk TE (2007) Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett 7:3418–3423CrossRefGoogle Scholar
  11. 11.
    Kooij ES, Wormeester H, Brouwer EA, van Vroonhoven E, van Silfhout A, Poelsema B (2002) Optical characterization of thin colloidal gold films by spectroscopic ellipsometry. Langmuir 18:4401–4413CrossRefGoogle Scholar
  12. 12.
    Bohren CF, Huffman DRCF (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  13. 13.
    Doremus R, Kao S-C, Garcia R (1992) Optical absorption of small copper particles and the optical properties of copper. Appl Opt 31:5773–5784CrossRefGoogle Scholar
  14. 14.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  15. 15.
    Stoller P, Jacobsen V, Sandoghdar V (2006) Measurement of the complex dielectric constant of a single gold nanoparticle. Opt Lett 31:2474–2476CrossRefGoogle Scholar
  16. 16.
    Smakula A (1930) Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide. Z Phys 59:603–614CrossRefGoogle Scholar
  17. 17.
    Räty J, Keränen E, Peiponen K-E (1998) The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV–visible spectral range. Meas Sci Technol 9:95–99CrossRefGoogle Scholar
  18. 18.
    Lazarides AA, Kelly KL, Jensen TR, Schatz GC (2000) Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J Mol Struct THEOCHEM 529:59–63CrossRefGoogle Scholar
  19. 19.
    Li X, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance. J Phys Chem B 110:15755–15762CrossRefGoogle Scholar
  20. 20.
    Partington JR (1960) Advanced treatise on physical chemistry vol. 4. Longmans, Green and CO, NorwichGoogle Scholar
  21. 21.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, LondonGoogle Scholar
  22. 22.
    Dexter DL (1956) Absorption of light by atoms in solids. Phys Rev 101:48–55CrossRefGoogle Scholar
  23. 23.
    Dumas L, Quesnel E (2002) Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition. J Vac Sci Technol A 20:102CrossRefGoogle Scholar
  24. 24.
    De Boni L, Wood EL, Toro C, Hernandez FE (2008) Optical saturable absorption in gold nanoparticles. Plasmonics 3:171–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ville Kontturi
    • 1
  • Pertti Silfsten
    • 1
  • Jukka Räty
    • 2
  • Kai-Erik Peiponen
    • 1
  1. 1.Department of Physics and MathematicsUniversity of Eastern FinlandJoensuuFinland
  2. 2.CEMIS-OuluUniversity of OuluKajaaniFinland

Personalised recommendations