, Volume 6, Issue 2, pp 337–343 | Cite as

Impedance Matching Induce High Transmission and Flat Response Band-Pass Plasmonic Waveguides



We consider a model utilizing the concept of impedance matching, which can be applied to design the coupled cascaded plasmonic cavity waveguide with desired properties. We use a transfer matrix method to obtain its transmission and dispersion diagrams. Base on this method, we demonstrate that a band-pass metal–dielectric–metal plasmonic filter with quasi-flat group velocity and tunable bandwidth can be achieved.


Surface plasmons Impedance matching Wavelength filtering 



Y. Xu acknowledges the partial support from the China Scholarship Council and the Nonlinear Research Centre at ANU. The work of A.E. Miroshnichenko was supported by the Australian Research Council. L.J. Wu and S. Lan acknowledge the financial support from the National Natural Science Foundation of China (grant nos.10774050 and 10974060) and the Program for Innovative Research Team of the Higher Education in Guangdong (grant no. 06CXTD005).


  1. 1.
    Rayleigh L (1880) On reflection of vibrations at the confines of two media between which the transition is gradual. Proc Lond Math Soc 11:51–56CrossRefGoogle Scholar
  2. 2.
    Pozar DM (1998) Microwave engineering, 2nd edn. Wiley, NewYorkGoogle Scholar
  3. 3.
    Alù A, Engheta N (2008) Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat photon 2:307–310CrossRefGoogle Scholar
  4. 4.
    Huang JS, Feichtner T, Biagioni P, Hecht B (2009) Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett 9(5):1897–1902CrossRefGoogle Scholar
  5. 5.
    Ye YH, Ding J, Jeong DY, Khoo IC, Zhang QM (2004) Finite-size effect on one-dimensional coupled-resonator optical waveguides. Phys Rev E 69:056604CrossRefGoogle Scholar
  6. 6.
    Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102CrossRefGoogle Scholar
  7. 7.
    Kocabas SE, Veronis G, Miller DAB, Fan S (2008) Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel Top Quantum Electron 14(6):1462–1472CrossRefGoogle Scholar
  8. 8.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  9. 9.
    Wang B, Wang GP (2005) Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. Appl Phys Lett 87:013107CrossRefGoogle Scholar
  10. 10.
    Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937CrossRefGoogle Scholar
  11. 11.
    Hossieni A, Massoud Y (2006) A low-loss metal–insulator–metal plasmonic bragg reflector. Opt Express 14:11318–11323CrossRefGoogle Scholar
  12. 12.
    Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol Lett 19:91–93CrossRefGoogle Scholar
  13. 13.
    Yu Z, Veronis G, Fan S, Brongersma ML (2008) Gain-induced switching in metal–dielectric–metal plasmonic waveguides. Appl Phys Lett 92:041117CrossRefGoogle Scholar
  14. 14.
    Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16:16314–16325CrossRefGoogle Scholar
  15. 15.
    Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric size. Opt Lett 33:2874–2876CrossRefGoogle Scholar
  16. 16.
    Hosseini A, Nejati H, Massoud Y (2008) Modeling and design methodology for metal–insulator–metal plasmonic Bragg reflectors. Opt Express 16:1475–1480CrossRefGoogle Scholar
  17. 17.
    Gagnon DSLy, Kocabas SE, Miller DAB (2008) Characteristic impedance model for plasmonic metal slot waveguides. J Selected Top Quant Electron 14:1473–1478CrossRefGoogle Scholar
  18. 18.
    Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating. Opt Express 16:413–425CrossRefGoogle Scholar
  19. 19.
    Liu JQ, Wang LL, He MD, Huang WQ, Wang DY, Zou BS, Wen SC (2008) A wide bandgap plasmonic Bragg reflector. Opt Express 16:4888–4894CrossRefGoogle Scholar
  20. 20.
    Kocabas SE, Veronis G, Miller DAB, Fan S (2009) Modal analysis and coupling in metal–insulator–metal waveguides. Phys Rev B 79:035120CrossRefGoogle Scholar
  21. 21.
    Min C, Veronis G (2009) Absorption switches in metal–dielectric–metal plasmonic waveguides. Opt Express 17:10757–10766CrossRefGoogle Scholar
  22. 22.
    Gong YK, Wang LR, Hu XH, Li XH, Liu XM (2009) Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide. Opt Express 17:13727–13736CrossRefGoogle Scholar
  23. 23.
    Tao J, Huang XG, Lin XS, Zhang Q, Jin XP (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17:13989–13994CrossRefGoogle Scholar
  24. 24.
    Zhong ZJ, Xu Y, Lan S, Dai QF, Wu LJ (2010) Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media. Opt Express 18:79–86CrossRefGoogle Scholar
  25. 25.
    Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18:6191–6204CrossRefGoogle Scholar
  26. 26.
    Zhang J, Cai LK, Bai WL, Song GF (2010) Flat surface plasmon polariton bands in Bragg grating waveguide for slow light. J Lightwave Technol 28:2030–2036CrossRefGoogle Scholar
  27. 27.
    Gong YK, Liu XM, Wang LR (2010) High-channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings. Opt Lett 35:285–287CrossRefGoogle Scholar
  28. 28.
    Chang YJ, Lo GY (2010) A narrowband metal–multi-insulator–metal waveguide plasmonic Bragg grating. IEEE Photonics Technol Lett 22:634–636CrossRefGoogle Scholar
  29. 29.
    Chang YJ (2010) Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating. Opt Express 18:13258–13270CrossRefGoogle Scholar
  30. 30.
    Davoyan AR, Shadrivov IV, Bozhevolnyi SI, Kivshar YS (2010) Backward and forward modes guided by metal–dielectric–metal plasmonic waveguides. J Nanophoton 4:043509CrossRefGoogle Scholar
  31. 31.
    Lee PH, Lan YC (2010) Plasmonic waveguide filters based on tunneling and cavity effects. Plasmonics 5:417–422CrossRefGoogle Scholar
  32. 32.
    Haus HA (1984) Wave and fields in optoelectronics. Prentice-Hall, Englewood CliffsGoogle Scholar
  33. 33.
    Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin lossy metal films. Phys Rev B 33:5186–5201CrossRefGoogle Scholar
  34. 34.
    Bendickson JM, Dowling JP, Scalora M (1996) Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures. Phys Rev E 53:4107–4121CrossRefGoogle Scholar
  35. 35.
    Little BE, Chu ST, Hryniewicz JV, Absil PP (2000) Filter synthesis for periodically coupled microring resonators. Opt Lett 25:344–346CrossRefGoogle Scholar
  36. 36.
    Melloni A (2001) Synthesis of a parallel-coupled ring-resonator filter. Opt Lett 26:917–919CrossRefGoogle Scholar
  37. 37.
    Melloni A, Martinelli M (2002) Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J Lightwave Technol 20:296–303CrossRefGoogle Scholar
  38. 38.
    Hryniewicz JV, Absil PP, Little BE, Wilson RA, Ho PT (2000) Higher order filter response in coupled microring resonators. IEEE Photonics Technol Lett 12:320–322CrossRefGoogle Scholar
  39. 39.
    Little BE, Chu ST, Absil PP, Hryniewicz JV, Johnson FG, Seiferth F, Gill D, Van V, King O, Trakalo M (2004) Very high-order microring resonator filters for WDM applications. IEEE Photonics Technol Lett 16:2263–2265CrossRefGoogle Scholar
  40. 40.
    Lan S, Nishikawa S, Ishikawa H (2001) Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses. J Appl Phys 90:4321–4327CrossRefGoogle Scholar
  41. 41.
    Bayindir M, Temelkuran B, Ozbay E (2000) Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys Rev Lett 84:2140–2143CrossRefGoogle Scholar
  42. 42.
    Bayindir M, Ozbay E (2000) Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal. Phys Rev B 62:R2247CrossRefGoogle Scholar
  43. 43.
    Lan S, Nishikawa S, Sugimoto Y, Ikeda N, Asakawa K, Ishikawa H (2002) Analysis of defect coupling in one- and two-dimensional photonic crystals. Phys Rev B 65:165208CrossRefGoogle Scholar
  44. 44.
    Wang ZY, Ramachandran S (2003) Ultrasensitive long-period fiber gratings for broadband modulators and sensors. Opt Lett 28:2458–2460CrossRefGoogle Scholar
  45. 45.
    Kang ZW, Lin WH, Wang GP (2009) Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices. J Opt Soc Am B 26:1944–1948CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nonlinear Physics Centre and Centre for Ultra-high-bandwidth Devices for Optical Systems (CUDOS), Research School for Physics and EngineeringAustralian National UniversityCanberraAustralia
  2. 2.Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations