, Volume 6, Issue 2, pp 319–325

Optimization of Optoelectronic Plasmonic Structures

  • Hengliang Wang
  • Zhenghua An
  • Che Qu
  • Shiyi Xiao
  • Lei Zhou
  • Susumu Komiyama
  • Wei Lu
  • Xuechu Shen
  • Paul K. Chu


We discuss the interplay between surface plasmon polaritons (SPPs) and localized shape resonances (LSRs) in a plasmonic structure working as a photo-coupler for a GaAs quantum well photodetector. For a targeted electronic inter-subband transition inside the quantum well, maximum photon absorption is found by compromising two effects: the mode overlapping with incident light and the lifetime of the resonant photons. Under the optimal conditions, the LSR mediates the coupling between the incident light and plasmonic structure while the SPP provides long-lived resonance which is limited ultimately by metal loss. The present work provides insight to the design of plasmonic photo-couplers in semiconductor optoelectronic applications.


Surface plasmon polariton Localized shape resonance Extraordinary optical transmission Inter-subband transition 


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  3. 3.
    Williams BS (2007) Terahertz quantum-cascade laser. Nat Photonics 1:517–525CrossRefGoogle Scholar
  4. 4.
    Perchec JL, Desieres Y, De Lamaestre ER (2009) Plasmon-based photosensors comprising a very thin semiconducting region. Appl Phys Lett 94:181104CrossRefGoogle Scholar
  5. 5.
    Gordon R, Brolo AG, Sinton D, Kavanagh KL (2010) Resonant optical transmission through hole-arrays in metal films: physics and applications. Laser Photon Rev 4(2):311–335CrossRefGoogle Scholar
  6. 6.
    Chang CY, Chang HY, Chen CY, Tsai MW, Chang YT, Lee SC, Tang SF (2007) Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl Phys Lett 91:63107CrossRefGoogle Scholar
  7. 7.
    Shenoi RV, Ramirez, Sharma Y, Attaluri RS, Rosenberg J, Painter O, Krishna S,
  8. 8.
    Wu W, Bonakdar A, Mohseni H (2010) Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96:161107CrossRefGoogle Scholar
  9. 9.
    Chang CC, Sharma YD, Kim YS, Bur JA, Shenoi RV, Krishna S, Huang D, Lin SY (2010) A surface plasmon enhanced infrared photodetector based on inas quantum dots. Nano Lett 10:1704–1709CrossRefGoogle Scholar
  10. 10.
    Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901CrossRefGoogle Scholar
  11. 11.
    Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401CrossRefGoogle Scholar
  12. 12.
    Chen CY, Tsai MW, Chuang TH, Chang YT, Lee SC (2007) Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice. Appl Phys Lett 91:063108CrossRefGoogle Scholar
  13. 13.
    Petschulat J, Cialla D, Janunts N, Rockstuhl C, Hübner U, Möller R, Schneidewind H, Mattheis R, Popp J, Tünnermann A, Lederer F, Pertsch T (2010) Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering. Opt Express 18(5):4184–4197CrossRefGoogle Scholar
  14. 14.
    Torrado JF, González-Díaz JB, González MU, García-Martín A, Armelles G (2010) Magneto-optical effects in interacting localized and propagating surface plasmon modes. Opt Express 18(15):15635–15642CrossRefGoogle Scholar
  15. 15.
    Bao YJ, Peng RW, Shu DJ, Wang M, Lu X, Shao J, Lu W, Ming NB (2008) Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Phys Rev Lett 101:087401CrossRefGoogle Scholar
  16. 16.
    An Z, Chen JC, Ueda T, Komiyama S, Hirakawa K (2005) Infrared phototransistor using capacitively coupled two-dimensional electron gas. Appl Phys Lett 86:172106CrossRefGoogle Scholar
  17. 17.
    An Z, Ueda T, Komiyama S, Hirakawa K (2007) Metastable excited states of a closed quantum dot with high sensitivity to infrared photons. Phys Rev B 75:085417CrossRefGoogle Scholar
  18. 18.
    Nickels P, Matsuda S, Ueda T, An Z, Komiyama S (2010) Metal hole arrays as resonant photo-coupler for charge sensitive infrared phototransistors. IEEE J Quant Electron 46:384CrossRefGoogle Scholar
  19. 19.
    CONCERTO 7.0, Vector Fields Limited, England (2008)Google Scholar
  20. 20.
    Jiang YW, Tzuang LD, Ye YH, Wu YT, Tsai MW, Chen CY, Lee SC (2009) Effect of Wood's anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio. Opt Express 17:2631–2637CrossRefGoogle Scholar
  21. 21.
    Diwekar M, Matsui T, Agrawal A, Nahata A, Vardeny ZV (2007) Midinfrared optical response and thermal emission from plasmonic lattices on Al films. Phys Rev B 76:195402CrossRefGoogle Scholar
  22. 22.
    Lee JW, Seo MA, Kang DH, Khim KS, Jeoung SC, Kim DS (2007) Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Phys Rev Lett 99:137401CrossRefGoogle Scholar
  23. 23.
    Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901CrossRefGoogle Scholar
  24. 24.
    Mary A, Rodrigo SG, Martín-Moreno L, García-Vidal FJ (2007) Theory of light transmission through an array of rectangular holes. Phys Rev B 76:195414CrossRefGoogle Scholar
  25. 25.
    Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S, Mahajan S, Russell AE, Bartlett PN (2006) Localized and delocalized plasmons in metallic nanovoids. Phys Rev B 74:245415CrossRefGoogle Scholar
  26. 26.
    García de Abajo FJ, Gómez-Medina R, Sáenz JJ (2005) Full transmission through perfect-conductor subwavelength hole arrays. Phys Rev E 72:016608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hengliang Wang
    • 1
  • Zhenghua An
    • 1
  • Che Qu
    • 1
  • Shiyi Xiao
    • 1
  • Lei Zhou
    • 1
  • Susumu Komiyama
    • 2
  • Wei Lu
    • 3
  • Xuechu Shen
    • 1
    • 3
  • Paul K. Chu
    • 4
  1. 1.Institute of Advanced Materials and State Key Laboratory of Surface PhysicsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Basic ScienceUniversity of TokyoTokyoJapan
  3. 3.National Laboratory for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  4. 4.Department of Physics and Materials ScienceCity University of Hong KongHong KongChina

Personalised recommendations