Advertisement

Plasmonics

, Volume 6, Issue 2, pp 201–206 | Cite as

Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate

  • Wen-Chi Lin
  • Lu-Shing Liao
  • Yi-Hui Chen
  • Hung-Chun Chang
  • Din Ping Tsai
  • Hai-Pang Chiang
Article

Abstract

The dependence of nanoparticle size on surface-enhanced Raman scattering (SERS) from silver film over nanospheres substrate is studied. For a range of nanosphere sizes from 430 to 1,500 nm, optimum SERS signal is obtained with a nanosphere size of 1,000 nm at an excitation wavelength of 532 nm. We have clarified the physical origin of this optimization in an unambiguious way as due to resonant plasmonic excitations from 3D finite-difference time-domain simulations, as well as with the assistance of UV-visible reflectance spectrum.

Keywords

Surface-enhanced Raman scattering (SERS) Nanosphere lithography (NSL) Silver film over nanospheres (AgFON) Enhanced factor (EF) Finite-difference time-domain (FDTD) 

Notes

Acknowledgment

H.-P. Chiang acknowledges financial support from Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University and the National Science Council of ROC under grant number NSC 97-2112-M-019-001-MY3.

References

  1. 1.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  2. 2.
    Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Clust Sci 10:295–317CrossRefGoogle Scholar
  3. 3.
    Sant’Ana AC, Rocha TCR, Santos PS, Zanchet D, Temperini MLA (2009) Size-dependent SERS enhancement of colloidal silver nanoplates: the case of 2-amino-5-nitropyridine. J Raman Spectrosc 40:183–190CrossRefGoogle Scholar
  4. 4.
    Lin WC, Jen HC, Chen CL, Hwang DF, Chang R, Hwang JS, Chiang HP (2009) SERS study of Tetrodotoxin (TTX) by using silver nanoparticle arrays. Plasmonics 4:187–192CrossRefGoogle Scholar
  5. 5.
    Chiang HP, Mou B, Li KP, Chiang P, Wang D, Lin SJ, Tse WS (2001) FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part I—a density functional theory study of benzo(a)pyrene (BaP) and benzo(e) pyrene (BeP). J Raman Spectrosc 32:45–51CrossRefGoogle Scholar
  6. 6.
    Chiang HP, Mou B, Li KP, Chiang P, Wang D, Lin SJ, Tse WS (2001) FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part II—a theoretical study of the transition states of oxygenation of benzo(a)pyrene (BaP). J Raman Spectrosc 32:53–58CrossRefGoogle Scholar
  7. 7.
    Doering WE, Nie S (2002) Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. J Phys Chem B 106:311–317CrossRefGoogle Scholar
  8. 8.
    Tsai DP, Kovacs J, Wang Z, Moskovits M, Shalaev VM, Suh JS, Botet R (1994) Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. Phys Rev Lett 72:4149–4152CrossRefGoogle Scholar
  9. 9.
    Shalaev VM, Botet R, Tsai DP, Kovacs J, Moskovits M (1994) Fractals: localization of dipole excitations and giant optical polarizabilities. Phys A 207:197–207CrossRefGoogle Scholar
  10. 10.
    Vlckova B, Gu XJ, Tsai DP, Moskovits M (1996) A microscopic surface-enhanced Raman study of a single adsorbate-covered colloidal silver aggregate. J Phys Chem 100(8):3169–3174CrossRefGoogle Scholar
  11. 11.
    Chiang HP, Leung PT, Tse WS (2000) Remarks on the substrate-temperature dependence of surface enhanced Raman scattering. J Phys Chem B 104:2348–2350CrossRefGoogle Scholar
  12. 12.
    Le Ru EC, Etchegoin PG, Grand J, Félidj N, Aubard J, Lévi G, Hohenau A, Krenn JR (2008) Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Curr Appl Phys 8:467–470CrossRefGoogle Scholar
  13. 13.
    Chu H, Liu Y, Huang Y, Zhao Y (2007) A high sensitive fiber SERS probe based on silver nanorod arrays. Opt Express 15:12230–12239CrossRefGoogle Scholar
  14. 14.
    Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL (2006) Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv Mater 18:491–495CrossRefGoogle Scholar
  15. 15.
    Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556CrossRefGoogle Scholar
  16. 16.
    Hulteen JC, Van Duyne RP (1995) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A 13(3):1553–1558CrossRefGoogle Scholar
  17. 17.
    Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography effect of the external dielectric medium on the surface Plasmon. J Phys Chem B 103:9846–9853CrossRefGoogle Scholar
  18. 18.
    Haynes JC, Van Duyne RP (2001) Nanosphere lithography a versatile nanofabrication tool for studies of size-dependent. J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  19. 19.
    Baia L, Baia M, Popp J, Astilean S (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110:23982–23986CrossRefGoogle Scholar
  20. 20.
    Lin WC, Huang SH, Chen CL, Chen CC, Tsai DP, Chiang HP (2010) Controlling SERS intensity by tuning the size and height of a silver nanoparticle array. Appl Phys A 101:185–189CrossRefGoogle Scholar
  21. 21.
    Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible Loss. J Phys Chem B 106:853–860CrossRefGoogle Scholar
  22. 22.
    Stropp J, Trachta G, Brehm G, Schneider S (2003) A new version of AgFON substrates for high-throughput analytical SERS applications. J Raman Spectrosc 34:26–32CrossRefGoogle Scholar
  23. 23.
    Koh R, Hayashi S, Yamamoto K (1987) Optimum surface roughness for surface enhanced Raman scattering. Solid State Commun 64:375–378CrossRefGoogle Scholar
  24. 24.
    Sabur A, Havel M, Gogotsi Y (2007) SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles. J Raman Spectrosc 39:61–67CrossRefGoogle Scholar
  25. 25.
    Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489CrossRefGoogle Scholar
  26. 26.
    Moody RL, Vo-Dinh T, Fletcher WH (1987) Investigation of experimental parameters for surface-enhanced Raman scattering (SERS) using silver-coated microsphere substrates. Appl Spectrosc 41:966–970CrossRefGoogle Scholar
  27. 27.
    Yu CP, Chang HC (2004) Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals. Opt Express 12:1397–1408CrossRefGoogle Scholar
  28. 28.
    Yu CP, Chang HC (2004) Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers. Opt Express 12:6165–6177CrossRefGoogle Scholar
  29. 29.
    Fang PP, Li JF, Yang ZL, Li LM, Ren B, Tian ZQ (2008) Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness. J Raman Spectrosc 39:1679–1687CrossRefGoogle Scholar
  30. 30.
    Zhu S, Luo X, Du C, Li F, Yin S, Deng Q, Fu Y (2007) Hybrid metallic nanoparticles for excitation of surface plasmon resonance. J Appl Phys 101:064701(1)–064701(2)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wen-Chi Lin
    • 1
  • Lu-Shing Liao
    • 1
  • Yi-Hui Chen
    • 2
  • Hung-Chun Chang
    • 2
  • Din Ping Tsai
    • 3
    • 4
  • Hai-Pang Chiang
    • 1
    • 4
    • 5
  1. 1.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungRepublic of China
  2. 2.Graduate Institute of Photonics and Optoelectronics, and Department of Electrical EngineeringNational Taiwan UniversityTaipeiRepublic of China
  3. 3.Department of PhysicsNational Taiwan UniversityTaipeiRepublic of China
  4. 4.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuRepublic of China
  5. 5.Institute of PhysicsAcademia SinicaTaipeiRepublic of China

Personalised recommendations