Advertisement

Plasmonics

, Volume 6, Issue 1, pp 183–188 | Cite as

High Q Long-Range Surface Plasmon Polariton Modes in Sub-wavelength Metallic Microdisk Cavity

  • Yi-Hao Chen
  • L. Jay Guo
Article

Abstract

Metal-capped microdisk cavity supporting surface plasmon polaritons (SPP)-guided whispering gallery mode (WGM) can achieve higher cavity factor Q than traditional microdisk cavity in sub-wavelength dimensions. We have numerically analyzed the limiting factors on Q using finite difference time domain method. The Q of SPP-guided WGM is primarily limited by the loss of metal. A thin metal-sandwiched microdisk cavity supporting long-range surface plasmon polariton mode was proposed to reduce the metal loss. The proposed cavities have been shown to increase cavity Q by more than 15-fold and reduce threshold gain by more than threefold as opposed to traditional microdisk cavities.

Keywords

Nanolaser Surface plasmon mode Whispering gallery mode Semiconductor laser cavity 

Notes

Acknowledgments

We are grateful to Prof. P. C. Ku for discussions and to DARPA/MTO for financial support

References

  1. 1.
    McCall SL et al (1992) Whispering-gallery mode micordisk lasers. Appl Phys Lett 60:289–291CrossRefGoogle Scholar
  2. 2.
    Zhang Z et al (2007) Visible submicron microdisk lasers. Appl Phys Lett 90:111119CrossRefGoogle Scholar
  3. 3.
    Song Q, Cao H, Ho ST, Solomon GS (2009) Near-IR subwavelength microdisk lasrs. Appl Phys Lett 94:061109CrossRefGoogle Scholar
  4. 4.
    Hill MT et al (2007) Lasing in metallic-coated nanocavities. Nat Photonics 1:589–594CrossRefGoogle Scholar
  5. 5.
    Feigenbaum E, Orenstein M (2007) Optical 3D cavity modes below the diffraciton-limit using slow-wave surface-plasmon-polaritons. Opt Express 15(5):2607–2612CrossRefGoogle Scholar
  6. 6.
    Manolatou C, Rana F (2008) Subwavelength nanopatch cavities for semiconductor plasmon lasers. IEEE J Quantum Electron 44(5):435–447CrossRefGoogle Scholar
  7. 7.
    Mizrahi A et al (2008) Low threshold gain metal coated laser nanoresonators. Opt Lett 33(11):1261–1263CrossRefGoogle Scholar
  8. 8.
    Min B, Ostby E et al (2009) High-Q surface–plasmon-polariton whispering-gallery microcavity. Nature 457:455–458CrossRefGoogle Scholar
  9. 9.
    Chin MK, Chu DY, Ho S-T (1994) Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whisepring gallery modes. J Appl Phys 75(7):3302–3307CrossRefGoogle Scholar
  10. 10.
    Heebner JE, Bond TC, Kallman JS (2007) Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators. Opt Express 15(8):4452–4473CrossRefGoogle Scholar
  11. 11.
    Kim MW et al (2009) Sub-wavelength surface plasmon optical cavity—scaling, amplificaiton and coherence. Journal of Selected Topics in Quantum Electronics 15(5):1521–1528CrossRefGoogle Scholar
  12. 12.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  13. 13.
    Johnson PB, Christy RW (1972) Optical constants of the Noble metals. Phys Rev B 6(12):4370–4379CrossRefGoogle Scholar
  14. 14.
    Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47(26):1927–1930CrossRefGoogle Scholar
  15. 15.
    Egorov AY, Zhukov AE, Ustinov VM (2001) 1.3 μm GaAs-based quantum well and quantum dot lasers: comparative analysis. J Electron Mater 30(5):477–481CrossRefGoogle Scholar
  16. 16.
    Amano T et al (2007) Laser characteristics of 1.3-μm quantum dots laser with high-density quantum dots. Journal of Selected Topics in Quantum Electronics 13(5):1273–1278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.EECS DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations