, Volume 6, Issue 1, pp 105–112 | Cite as

Application of Gold Nanorods for Plasmonic and Magnetic Imaging of Cancer Cells

  • Liwei Liu
  • Hong Ding
  • Ken-Tye Yong
  • Indrajit Roy
  • Wing-Cheung Law
  • Atcha Kopwitthaya
  • Rajiv Kumar
  • Folarin Erogbogbo
  • Xihe Zhang
  • Paras N. Prasad


We report the use of biocompatible gold nanorods (GNRs) as multimodal (plasmonic and magnetic) probes for cancer cell labeling in vitro. These multifunctional and multimodal bioconjugates were prepared by replacing cetyltrimethylammonium bromide with a mixture of functionalized PEGylation molecules so that a variety of functionalities (e.g., magnetic resonance imaging agent gadolinium (Gd) and biorecognition molecule transferrin (Tf)) can be easily integrated using simple chemistry. It was shown that Gd incorporation did not interfere with the plasmonic properties of the GNRs and a strong T1 relaxivity was estimated (10.0 mM−1 s−1), which is more than twice that of the clinical MRI agent Gd-DTPA. The large observed T1 relaxivity was possibly due to the huge surface to volume ratio of GNR, which allowed huge amount of amine-terminated molecule to anchor on the surface, coupled with Gd (III) ions for the enhanced relaxation of water protons. Pancreatic cancer cell overexpressing the transferring receptor was served as the in vitro model, and the Tf-mediated uptake was demonstrated and confirmed by dark-field imaging and transmission electron microscopy. More importantly, cell viability (MTS) assay did not reveal any sign of toxicity in these treated cells, suggesting that PEGylated GNRs can serve as a biocompatible, multifunctional, and multimodal platform for variable bio-applications.


Gold nanorods Cancer Dark-field imaging MRI DOTA Gd 



This work was supported by grants from the National Cancer Institute/National Institutes for Health (RO1-CA-119397) and the start-up grant of the International Joint Research Center for Nanophotonics and Biophotonics (IJRCNB).


  1. 1.
    Prasad PN (2003) Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Prasad PN (2004) Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Ferrari M (2005) Nat Rev Cancer 5:161–171CrossRefGoogle Scholar
  4. 4.
    Whitesides GM (2005) Small 1:172–179CrossRefGoogle Scholar
  5. 5.
    Lim YT, Noh Y-W, Cho J-H, Han JH, Choi BS, Kwon J, Hong KS, Gokarna A, Cho Y-H, Chung BH (2009) J Am Chem Soc 131:17145–17154CrossRefGoogle Scholar
  6. 6.
    Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Small 4:1925–1929CrossRefGoogle Scholar
  7. 7.
    Hsiao J-K, Tsai C-P, Chung T-H, Hung Y, Yao M, Liu H-M, Mou C-Y, Yang C-S, Chen Y-C, Huang D-M (2008) Small 4:1445–1452CrossRefGoogle Scholar
  8. 8.
    Zheng J, Jaffray D, Allen C (2009) Mol Pharm 6:571–580CrossRefGoogle Scholar
  9. 9.
    Kim D, Jeong YY, Jon S (2010) ACS Nano 4:3689–3696CrossRefGoogle Scholar
  10. 10.
    Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) ACS Nano 3:2740–2750CrossRefGoogle Scholar
  11. 11.
    Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) J Am Chem Soc 129:7661–7665CrossRefGoogle Scholar
  12. 12.
    Glaus C, Rossin R, Welch MJ, Bao G (2010) Bioconjug Chem 21:715–722CrossRefGoogle Scholar
  13. 13.
    Law W-C, Yong K-T, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Small 5:1302–1310CrossRefGoogle Scholar
  14. 14.
    Yong K-T, Roy I, Ding H, Bergey EJ, Prasad PN (2009) Small 5:1997–2004CrossRefGoogle Scholar
  15. 15.
    Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT (2008) ACS Nano 2:873–878CrossRefGoogle Scholar
  16. 16.
    Félidj N, Laurent G, Grand J, Aubard J, Lévi G, Hohenau A, Aussenegg F, Krenn J (2006) Plasmonics 1:35–39CrossRefGoogle Scholar
  17. 17.
    Emerich DF (2005) Expert Opin Biol Ther 5:1–5CrossRefGoogle Scholar
  18. 18.
    Sullivan DC, Ferrari M (2004) Nanotechnology and tumor imaging: seizing an opportunity. In: Molecular imaging, B.C. Decker IncGoogle Scholar
  19. 19.
    Weissleder R (2001) Nat Biotech 19:316–317CrossRefGoogle Scholar
  20. 20.
    Law W-C, Yong K-T, Roy I, Xu G, Ding H, Bergey EJ, Zeng H, Prasad PN (2008) J Phys Chem C 112:7972–7977CrossRefGoogle Scholar
  21. 21.
    Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Adv Funct Mater 19:853–859CrossRefGoogle Scholar
  22. 22.
    Yong KT (2009) Nanotechnology 20:15102Google Scholar
  23. 23.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Cancer Res 63:1999–2004Google Scholar
  24. 24.
    Mitamura K, Imae T (2009) Plasmonics 4:23–30CrossRefGoogle Scholar
  25. 25.
    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  26. 26.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanomedicine 2:681–693CrossRefGoogle Scholar
  27. 27.
    Stone JW, Sisco PN, Goldsmith EC, Baxter SC, Murphy CJ (2006) Nano Lett 7:116–119CrossRefGoogle Scholar
  28. 28.
    Sonavane G, Tomoda K, Makino K (2008) Colloids Surf, B 66:274–280CrossRefGoogle Scholar
  29. 29.
    Kopwitthaya A, Yong K-T, Hu R, Roy I, Ding H, Vathy LA, Bergey EJ, Prasad PN (2010) Nanotechnoloy 21:315101Google Scholar
  30. 30.
    Zhu J, Yong K-T, Roy I , Hu R, Ding H, Zhao LL, Swihart MT, He GS, Cui YP, Prasad PN (2010) Nanotechnology 21:285106Google Scholar
  31. 31.
    Law W-C, Yong K-T, Baev A, Hu R, Prasad PN (2009) Opt Express 17:19041–19046CrossRefGoogle Scholar
  32. 32.
    Yong K-T, Swihart M, Ding H, Prasad P (2009) Plasmonics 4:79–93CrossRefGoogle Scholar
  33. 33.
    Jain P, Huang X, El-Sayed I, El-Sayed M (2007) Plasmonics 2:107–118CrossRefGoogle Scholar
  34. 34.
    Sando G, Berry A, Campbell P, Baronavski A, Owrutsky J (2007) Plasmonics 2:23–29CrossRefGoogle Scholar
  35. 35.
    Mustafa D, Yang T, Xuan Z, Chen S, Tu H, Zhang A (2010) Plasmonics 5:221–231CrossRefGoogle Scholar
  36. 36.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Small 1:325–327CrossRefGoogle Scholar
  37. 37.
    Ding H, Yong K-T, Roy I, Pudavar HE, Law WC, Bergey EJ, Prasad PN (2007) J Phys Chem C 111:12552–12557CrossRefGoogle Scholar
  38. 38.
    Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Nano Lett 8:4593–4596CrossRefGoogle Scholar
  39. 39.
    Hu R, Yong K-T, Roy I, Ding H, He S, Prasad PN (2009) J Phys Chem C 113:2676–2684CrossRefGoogle Scholar
  40. 40.
    Calzolari A, Finisguerra V, Oliviero I, Deaglio S, Mariani G, Malavasi F, Testa U (2009) Blood Cells, Molecules, and Diseases 42:5–13CrossRefGoogle Scholar
  41. 41.
    Hirsch L, Gobin A, Lowery A, Tam F, Drezek R, Halas N, West J (2006) Ann Biomed Eng 34:15–22CrossRefGoogle Scholar
  42. 42.
    Huang X, Jain P, El-Sayed I, El-Sayed M (2008) Lasers Med Sci 23:217–228CrossRefGoogle Scholar
  43. 43.
    Huang H-C, Barua S, Kay DB, Rege K (2009) ACS Nano 3:2941–2952CrossRefGoogle Scholar
  44. 44.
    Huang H-C, Rege K, Heys JJ (2010) ACS Nano 4:2892–2900CrossRefGoogle Scholar
  45. 45.
    Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2007) Nano Lett 8:302–306CrossRefGoogle Scholar
  46. 46.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Mol Pharm 5:505–515CrossRefGoogle Scholar
  47. 47.
    Boyd BJ (2008) Expert Opin Drug Deliv 5:69–85CrossRefGoogle Scholar
  48. 48.
    Burtea C, Laurent S, Elst L, Muller RN (2008) Contrast agents: magnetic resonance. Handb Exp Pharmacol 185:135–165CrossRefGoogle Scholar
  49. 49.
    Frullano L, Meade T (2007) J Biol Inorg Chem 12:939–949CrossRefGoogle Scholar
  50. 50.
    Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) J Nucl Cardiol 11:733–743CrossRefGoogle Scholar
  51. 51.
    Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) J Phys Chem B 104:6152–6163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Liwei Liu
    • 1
    • 2
    • 3
  • Hong Ding
    • 2
    • 3
  • Ken-Tye Yong
    • 2
    • 3
  • Indrajit Roy
    • 2
    • 3
  • Wing-Cheung Law
    • 2
    • 3
  • Atcha Kopwitthaya
    • 2
  • Rajiv Kumar
    • 2
  • Folarin Erogbogbo
    • 2
  • Xihe Zhang
    • 1
    • 3
  • Paras N. Prasad
    • 2
    • 3
  1. 1.School of ScienceChangchun University of Science and TechnologyChangchunChina
  2. 2.The Institute for Lasers, Photonics and Biophotonics (ILPB)The State University of New York at BuffaloBuffaloUSA
  3. 3.International Joint Research Center for Nanophotonics and BiophotonicsChangchunChina

Personalised recommendations