, Volume 6, Issue 1, pp 19–27 | Cite as

Asymmetric Propagation of Optical Signals in Graded Plasmonic Chains

  • Ming Jie ZhengEmail author
  • Dang Yuan Lei
  • Kousuke Yakubo
  • Kin Wah Yu


The propagation of optical signals has been studied theoretically and computationally in fully retarded graded plasmonic chains. Asymmetric optical response due to retardation has been observed in various plasmonic chains with gradients in host permittivities, particle sizes, and/or interparticle distances. The range of wavelength-dependent optical response is broadened by the graded effects of host permittivity. Asymmetric propagation ratio is found in the presence of any kind of gradients, and the physical mechanism is analyzed through the gradon modes. These results have potential applications in designing nanostructured plasmonic devices.


Asymmetric optical response Asymmetric propagation ratio Graded plasmonic chains 



This work was supported in part by RGC General Research Fund of Hong Kong SAR Government, the UK Engineering and Physical Sciences Research Council (EPSRC), and Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant Nos. 1956001 and 19360042). We thank Prof. Stefan A. Maier and Dr. J. J. Xiao for the inspiring discussion and careful reading of the manuscript.


  1. 1.
    Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331CrossRefGoogle Scholar
  2. 2.
    Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356CrossRefGoogle Scholar
  3. 3.
    Krenn JR, Dereux A, Weeber JC, Bourillot E, Lacroute Y, Goudonnet JP, Schider G, Gotschy W, Leitner A, Aussenegg FR, Girard C (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590CrossRefGoogle Scholar
  4. 4.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824CrossRefGoogle Scholar
  6. 6.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131CrossRefGoogle Scholar
  7. 7.
    Markel VA, Sarychev AK (2007) Propagation of surface plasmons in ordered and disordered chains of metal nanospheres. Phys Rev B 75:085426CrossRefGoogle Scholar
  8. 8.
    Maier SA, Atwater HA (2005) Propagation of surface plasmons in ordered and disordered chains of metal nanospheres. J Appl Phys 98:011101CrossRefGoogle Scholar
  9. 9.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189CrossRefGoogle Scholar
  10. 10.
    Li K, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91:227402CrossRefGoogle Scholar
  11. 11.
    Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402CrossRefGoogle Scholar
  12. 12.
    Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Science 308:1607CrossRefGoogle Scholar
  13. 13.
    Cubukcu E, Kort EA, Crozier KB, Capassoa F (2006) Plasmonic laser antenna. Appl Phys Lett 89:093120CrossRefGoogle Scholar
  14. 14.
    Sukharev M, Seideman T (2006) Phase and polarization control as a route to plasmonic nanodevices. Nano Lett 6:715CrossRefGoogle Scholar
  15. 15.
    de Waele R, Koenderink AF, Polman A (2007) Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7:2004CrossRefGoogle Scholar
  16. 16.
    Malyshev AV, Malyshev VA, Knoester J (2008) Frequency-controlled localization of optical signals in graded plasmonic chains. Nano Lett 8:2369CrossRefGoogle Scholar
  17. 17.
    Hernandez JV, Noordam LD, Robicheaux F (2005) Asymmetric response in a line of optically driven metallic nanospheres. J Phys Chem B 109:15808CrossRefGoogle Scholar
  18. 18.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668CrossRefGoogle Scholar
  19. 19.
    Xiao JJ, Yakubo K, Yu KW (2006) Optical switching in graded plasmonic waveguides. Appl Phys Lett 88:241111CrossRefGoogle Scholar
  20. 20.
    Xiao JJ, Yakubo K, Yu KW (2006) Dispersion and transitions of dipolar plasmon modes in graded plasmonic waveguides. Appl Phys Lett 89:221503CrossRefGoogle Scholar
  21. 21.
    Zheng MJ, Xiao JJ, Yu KW (2009) Tunable localization and oscillation of coupled plasmon waves in graded plasmonic chains. J Appl Phys 106:113307CrossRefGoogle Scholar
  22. 22.
    Park SY, Stroud D (2004) Surface-plasmon dispersion relations in chains of metallic nanoparticles An exact quasistatic calculation. Phys Rev B 69:125418CrossRefGoogle Scholar
  23. 23.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Zhen YR, Fung KH, Chan CT (2008) Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles. Phys Rev B 78:035419CrossRefGoogle Scholar
  25. 25.
    Maier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8:581CrossRefGoogle Scholar
  26. 26.
    Palik ED ed (1985) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  27. 27.
    Sweatlock LA, Maier SA, Atwater HA, Penninkhof JJ, Polman A (2005) Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B 71:235408CrossRefGoogle Scholar
  28. 28.
    Ibrahim IA, Mivelle M, Grosjean T, Allegre J-T, Burr GW, Baida FI (2010) Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Opt Lett 35:2448CrossRefGoogle Scholar
  29. 29.
    Hopkins PE, Serrano JR (2009) Phonon localization and thermal rectification in asymmetric harmonic chains using a nonequilibrium greens function formalism. Phys Rev B 80:201408(R)CrossRefGoogle Scholar
  30. 30.
    Huang JP, Yu KW (2006) Enhanced nonlinear optical responses of materials: composite effects. Phys Rep 431:87CrossRefGoogle Scholar
  31. 31.
    Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ming Jie Zheng
    • 1
    Email author
  • Dang Yuan Lei
    • 2
  • Kousuke Yakubo
    • 3
  • Kin Wah Yu
    • 1
    • 4
  1. 1.Department of PhysicsThe Chinese University of Hong KongHong KongChina
  2. 2.Physics DepartmentImperial College LondonLondonUK
  3. 3.Department of Applied Physics, Graduate School of EngineeringHokkaido UniversitySapporoJapan
  4. 4.Institute of Theoretical PhysicsThe Chinese University of Hong KongHong KongChina

Personalised recommendations