, Volume 5, Issue 3, pp 241–250 | Cite as

Tunable In-Plane Optical Anisotropy of Ag Nanoparticles Deposited by DC Sputtering onto SiO2 Nanocolumnar Films

  • Juan Ramon Sánchez-Valencia
  • Johann ToudertEmail author
  • Ana Borras
  • Carmen López-Santos
  • Angel Barranco
  • Inés Ortega Feliu
  • Agustin Rodriguez González-Elipe


This work reports an easy-to-handle method for growing two-dimensional assemblies of Ag nanostructures presenting a tunable in-plane optical anisotropy. Ag is deposited by DC sputtering in an Ar plasma at room temperature onto bundled nanocolumnar SiO2 thin films grown by glancing angle physical vapor deposition. In contrast with previously reported processes involving the grazing angle deposition of the metal, DC sputtering is performed at normal incidence. By varying the deposition angle of SiO2 and the Ar pressure, it was possible to tune the deposited amount of Ag and thus the topology of the Ag deposit from isolated spherical Ag nanoparticles with isotropic optical properties to strongly dichroic Ag nanostripes oriented along the bundling direction of the SiO2 nanocolumns. Based on simple calculations taking into account the shadowing effects during metal deposition, it is proposed that the width and shape of the tip of the bundled SiO2 nanocolumns influence significantly the metal local atom flux arriving to them and thus the final structure of the deposit.


Silver nanoparticles Nanostripes Nanochains Nanocolumnar silicon dioxide Plasmonic dichroism 



The authors thank the European Union (STREP Project PHODYE, contract no. 033793), the Spanish Ministry of Research and Innovation (Juan de la Cierva Grant JCI-2009-05098 for J.T., projects MAT2007-65764 and CONSOLIDER INGENIO 2010-CSD2008-00023), and the Junta de Andalucia (project TEP2275) for financial support. The help of the “Domingo Martinez” Foundation is also recognized.


  1. 1.
    Kreibig U, Volmer M (1999) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  2. 2.
    Zhou P, You GJ, Li YG, Han T, Li J, Wang SY, Chen LY, Liu Y, Qian SX (2003) Appl Phys Lett 83:3876CrossRefGoogle Scholar
  3. 3.
    Jun HS, Lee KS, Yoon SH, Lee TS, Kim IH, Jeong JH, Cheong B, Kim DS, Cho KM, Kim WM (2006) Phys Stat Sol (a) 203:1211CrossRefGoogle Scholar
  4. 4.
    Breit M, Podolskiy VA, Grésillon S, Von Plessen G, Feldmann J, Rivoal JC, Gadenne P, Sarychev AK, Shalaev VM (2001) Phys Rev B 64:125106CrossRefGoogle Scholar
  5. 5.
    Traverse A, Humbert C, Six C, Gayral A, Busson B (2008) Europhys Lett 83:64004CrossRefGoogle Scholar
  6. 6.
    Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Analyst 133:1308CrossRefGoogle Scholar
  7. 7.
    Toudert J, Camelio S, Babonneau D, Denanot MF, Girardeau T, Espinos JP, Yubero F, Gonzalez-Elipe AR (2006) J Appl Phys 98:1143116Google Scholar
  8. 8.
    Link S, El Sayed MA (2000) Int Rev Phys Chem 19:409CrossRefGoogle Scholar
  9. 9.
    Zhao L, Kelly KL, Schatz GC (2003) J Phys Chem B 107:7343CrossRefGoogle Scholar
  10. 10.
    Biteen JS, Sweatlock LA, Mertens H, Lewis NS, Polman A, Atwater HA (2007) J Phys Chem C 111:13372CrossRefGoogle Scholar
  11. 11.
    Fort E, Ricolleau C, Sau-Pueyo J (2003) Nano Lett 3:65CrossRefGoogle Scholar
  12. 12.
    Bakker RM, Yuan HK, Liu Z, Drachev VP, Kildishev AV, Shalaev VM (2008) Appl Phys Lett 92:043101CrossRefGoogle Scholar
  13. 13.
    Kitahara T, Sugawara A, Sano H, Mizutani G (2004) J Appl Phys 95:5002CrossRefGoogle Scholar
  14. 14.
    Moriarty P (2001) Rep Prog Phys 64:297CrossRefGoogle Scholar
  15. 15.
    Toma A, Chiappe D, Massabo D, Boragno C, Buatier de Mongeot F (2008) Appl Phys Lett 93:163104CrossRefGoogle Scholar
  16. 16.
    Oates TWH, Keller A, Noda S, Facsko S (2008) Appl Phys Lett 93:063106CrossRefGoogle Scholar
  17. 17.
    Suzuki M, Maekita W, Wada Y, Nakajima K, Kimura K, Fukuoka T, Mori Y (2006) Appl Phys Lett 88:203121CrossRefGoogle Scholar
  18. 18.
    Suzuki M, Maekita W, Kishimoto K, Teramura S, Nakajima K, Kimura K, Taga Y (2005) Jpn J Appl Phys 44:193CrossRefGoogle Scholar
  19. 19.
    Brett MJ, Hawkeye MM (2008) Science 319:1192CrossRefGoogle Scholar
  20. 20.
    Van Kranenburg H, Lodder C (1994) Mat Sci Eng R11:295Google Scholar
  21. 21.
    Hawkeye MM, Brett MJ (2007) J Vac Sci Technol A 25:1317CrossRefGoogle Scholar
  22. 22.
    Link S, Mohamed MB, El Sayed MB (1999) J Phys Chem B 103:8410CrossRefGoogle Scholar
  23. 23.
    Jain PK, Eustis S, El Sayed MA (2006) J Phys Chem B 110:18243CrossRefGoogle Scholar
  24. 24.
    Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) J Appl Phys 90:3825CrossRefGoogle Scholar
  25. 25.
    Liu Z, Wang H, Li H (1998) Appl Phys Lett 72:1823CrossRefGoogle Scholar
  26. 26.
    Venables JA, Spiller GDT, Hanbucken M (1984) Rep Prog Phys 47:399CrossRefGoogle Scholar
  27. 27.
    Desrousseaux G, Carlan A, Jiang Z (1993) J Phys II 3:1461CrossRefGoogle Scholar
  28. 28.
    Carrey J, Maurice JL (2002) Phys Rev B 65:05401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Juan Ramon Sánchez-Valencia
    • 1
  • Johann Toudert
    • 1
    Email author
  • Ana Borras
    • 2
  • Carmen López-Santos
    • 1
  • Angel Barranco
    • 1
  • Inés Ortega Feliu
    • 3
  • Agustin Rodriguez González-Elipe
    • 1
  1. 1.Instituto de Ciencia de Materiales de SevillaCentro de Investigaciones de la Isla de la Cartuja, CSICSevillaSpain
  2. 2.Nanotech Surfaces Laboratory, EmpaSwiss Federal Laboratories for Materials Testing and ResearchThunSwitzerland
  3. 3.Centro Nacional de AceleradoresUniversidad de SevillaSevillaSpain

Personalised recommendations