Plasmonics

, Volume 5, Issue 2, pp 213–219 | Cite as

Luminescence Study of Silver Nanoparticles Obtained by Annealed Ionic Exchange Silicate Glasses

  • Olivier Véron
  • Jean Philippe Blondeau
  • Naas Abdelkrim
  • Esidor Ntsoenzok
Article

Abstract

The photoluminescence of silver nanoparticles glasses obtained by ionic exchange and annealing is investigated for various ionic exchange times. These glasses are prepared by immersion of silicate glass samples in a molten salt bath of molar concentration 10% AgNO3 in NaNO3 at T = 320 °C. Scanning electron microscopy measurement in electron diffraction scattering (EDS) configuration confirms the silver presence in the various glasses, and the UV/visible absorption gives the evolution of the spectra after ionic exchange and plasmon resonance apparition after annealing. After annealing at 450 °C, both diagnostics inform us about the particles’ formation and the silver rediffusion. Silver nanoparticle growth after annealing prior leads to photoluminescence exaltation and quenching for the longest exchange samples. Subsequently, we propose potential mechanisms of the nanoparticle formation with an initial depolymerization of the silicate network during the ionic exchange and repolymerization during annealing.

Keywords

Luminescence Ionic-exchange glass Plasmon resonance SEM Optical properties 

References

  1. 1.
    Faraday M (1857) Philos Trans R Soc Lond 147:145CrossRefGoogle Scholar
  2. 2.
    JC Maxwell Garnett (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc Lond B 203:385–420CrossRefGoogle Scholar
  3. 3.
    Mie G (1908) Annales de Physikus 25(3):377CrossRefGoogle Scholar
  4. 4.
    Gonella F, Mazzoldi P (2000) Metal nanocluster composite glasses. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. San Diego, Academic PressGoogle Scholar
  5. 5.
    Zhang et al (2008) Plasmonics 3:127–150CrossRefGoogle Scholar
  6. 6.
    Meier et al (2005) J Appl Physics AP 98:011101CrossRefGoogle Scholar
  7. 7.
    Les nanosciences: Nanomatériaux et Nanochimie Collection Belin (2006)Google Scholar
  8. 8.
    Schulze G (1913) Ann Physis 40:335–367CrossRefGoogle Scholar
  9. 9.
    Miller SE (1969) Bell Syst Tech J 48(7):2059–2069Google Scholar
  10. 10.
    Izawa T et al (1972) Appl Phys Lett 21(12):584–586CrossRefGoogle Scholar
  11. 11.
    Thesis Christelle Annequin Polytechnic Institute of Grenoble 19 Janvier (1996)Google Scholar
  12. 12.
    Paje SE et al (2003) J Non Cryst Solids 23:539Google Scholar
  13. 13.
    Paje SE et al (2000) J Non Cryst Solids 278:128CrossRefGoogle Scholar
  14. 14.
    Jansen M et al (1987) Int Ed Engl 26:1098CrossRefGoogle Scholar
  15. 15.
    Greaves GN et al (1990) In: Uhlmann DR, Kreidl N (eds) Glass science and technology. Academic Press, New York, p 1Google Scholar
  16. 16.
    Wells et al (1975) Structural Inorganic Chemistry. Clarendon, Oxford, Chapitre 23Google Scholar
  17. 17.
    Frischat GH (1975) Ionic diffusion in oxide glasses. Trans Tech Publications, AedermannsdorfGoogle Scholar
  18. 18.
    Greaves et al (1991) Phil Mag A65:1059Google Scholar
  19. 19.
    Huang et al (1992) Chem Mater 2:151Google Scholar
  20. 20.
    Tetsuji et al (2000) J Non Cryst Solids 270:163CrossRefGoogle Scholar
  21. 21.
    Dubiel et al (1997) J Non Cryst Solids 220:30CrossRefGoogle Scholar
  22. 22.
    Blondeau et al (2008) J Non Cryst Solids 354:1026–1031CrossRefGoogle Scholar
  23. 23.
    Manikadan A et al (2003) Mater Res Bull 38:1545–1550CrossRefGoogle Scholar
  24. 24.
    Podlipensky et al (2004) J Lumin 109:135–142Google Scholar
  25. 25.
    Gangopadhyay et al (2005) Phys Rev Lett PRL 94:047403CrossRefGoogle Scholar
  26. 26.
    Paje et al (2003) JNCS 318:239–247CrossRefGoogle Scholar
  27. 27.
    Manikandan et al (2003) Mater Res Bull 38:1545–1550CrossRefGoogle Scholar
  28. 28.
    Borsell et al (2000) Appl Phys A 71:125–132Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Olivier Véron
    • 1
  • Jean Philippe Blondeau
    • 1
  • Naas Abdelkrim
    • 2
  • Esidor Ntsoenzok
    • 2
  1. 1.Institut PRISMEOrleans UniversityChartresFrance
  2. 2.CEMHTI-CNRS UPR3079Site CyclotronOrléans cedex 2France

Personalised recommendations