, Volume 5, Issue 2, pp 207–212 | Cite as

Hybrid Plasmonic Waveguide Based on Tapered Dielectric Nanoribbon: Excitation and Focusing



The nanofocusing of light source was proposed and simulated using the dielectric-loaded surface plasmon polariton (SPP) model with various laterally tapered planar dielectric architectures on the top surface of the metal. By using finite-difference time-domain method, enhancement factor for the local electric field under distinctive incident polarization was analyzed with different taper apexes under various incident wavelengths and incident angles of the excitation laser. The SPP dispersion and the effect of dissipation on adiabatic nanofocusing of SPP in a sharp taper structure were used to predict the optimal taper angles of the structure and to explain the phenomena of SPP wave slowing down as it propagating toward the taper end. This SPP nanofocusing process was also experimentally realized by illuminating the structure of a tapered CdS nanoribbon deposited on the Ag surface. As the emission of the focused SPP at the taper end, the proposed plasmonic structure can be severed as a light nanosource emitter in the future optical integrated circuits.


Surface plasmon polariton Near-field microscopy Waveguides Metal optics Nanostructure 


  1. 1.
    Raether H (1988) Surface plasmons—on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  2. 2.
    Fang ZY, Lin F, Huang S, Song WT, Zhu X (2009) Focusing surface plasmon polariton trapping of colloidal particles. Appl Phys Lett 94:063306CrossRefGoogle Scholar
  3. 3.
    Fang ZY, Dai T, Fu Q, Zhang B, Zhu X (2009) Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal. J Microscopy 235:138–143CrossRefGoogle Scholar
  4. 4.
    Pyayt AL, Wiley B, Xia YN, Chen AT, Dalton L (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nat Nanotechnol 3:660–665CrossRefGoogle Scholar
  5. 5.
    Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two dimensional optics with surface plasmon polaritons. Appl Phys Lett 81:1762–1764CrossRefGoogle Scholar
  6. 6.
    Stepanov AL, Krenn JR, Ditlbacher H, Hohenau A, Drezet A, Steinberger B, Leitner A, Aussenegg FR (2005) Quantitative analysis of surface plasmon interaction with silver nanoparticles. Opt Lett 30:1524–1526CrossRefGoogle Scholar
  7. 7.
    Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2004) Surface plasmon polariton-based optical beam profiler. Opt Lett 29:1408–1410CrossRefGoogle Scholar
  8. 8.
    van Nieuwstadt JAH, Sandtke M, Harmsen RH, Segerink FB, Prangsma JC, Enoch S, Kuipers L (2006) Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys Rev Lett 97:146102CrossRefGoogle Scholar
  9. 9.
    Verhagen E, Kuipers L, Polman A (2007) Enhanced nonlinear optical effects with a tapered plasmon waveguide. Nano Lett 7:334–337CrossRefGoogle Scholar
  10. 10.
    Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7:2784–2788CrossRefGoogle Scholar
  11. 11.
    Gramotnev DK (2005) Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach. J Appl Phys 98:104302CrossRefGoogle Scholar
  12. 12.
    Vernon KC, Gramotnev DK, Pile DFP (2007) Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J Appl Phys 101:104312CrossRefGoogle Scholar
  13. 13.
    Nerkararyan Kh, Abrahamyan T, Janunts E, Khachatryan R, Harutyunyan S (2006) Excitation and propagation of surface plasmon polaritons on the gold covered conical tip. Phys Lett A 350:147–149CrossRefGoogle Scholar
  14. 14.
    Ding W, Andrews SR, Maier SA (2007) Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A 75:063822CrossRefGoogle Scholar
  15. 15.
    Steinberger B, Hohenau A, Ditlbacher H, Stepanov AL, Drezet A, Aussenegg FR, Leitner A, Krenn JR (2006) Dielectric stripes on gold as surface plasmon waveguide. Appl Phys Lett 88:094104CrossRefGoogle Scholar
  16. 16.
    Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguide. Phys Rev B 75:245405CrossRefGoogle Scholar
  17. 17.
    Krasavin AV, Zayats AV (2008) Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys Rev B 78:045425CrossRefGoogle Scholar
  18. 18.
    Fang ZY, Zhang XJ, Liu D, Zhu X (2008) Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. Appl Phys Lett 93:073306CrossRefGoogle Scholar
  19. 19.
    Fang ZY, Huang S, Lin F, Zhu X (2009) Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Opt Express 17:20327–20332CrossRefGoogle Scholar
  20. 20.
    Fang ZY, Lin CF, Ma RM, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4:75–82CrossRefGoogle Scholar
  21. 21.
    Zayats AV, Smolyaninovb II, Maradudinc AA (2005) Nano-optics of surface plasmon polaritons. Physics Reports 408:131–314CrossRefGoogle Scholar
  22. 22.
    Bouhelier A, Renger J, Beversluis MR, Novotny L (2003) Plasmon-coupled tip-enhanced near-field optical microscopy. J Microscopy 210:220–224CrossRefGoogle Scholar
  23. 23.
    Stockman MI (2004) Nanofocusing of optical energy in tapered plasmon waveguides. Phys Rev Lett 93:137404CrossRefGoogle Scholar
  24. 24.
    Vogel MW, Gramotnev DK (2007) Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation. Phys Lett A 363:507–511CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Physics, State Key Laboratory for Mesoscopic PhysicsPeking UniversityBeijingPeople’s Republic of China
  2. 2.National Center for Nanoscience and TechnologyBeijingPeople’s Republic of China

Personalised recommendations