, Volume 5, Issue 2, pp 141–148 | Cite as

3D Profile Simulation of Metal Nanostructures Obtained by Closely Packed Nanosphere Lithography

  • Xiaodong Zhou
  • Kai Yu Liu
  • Wolfgang Knoll
  • Chenggen Quan
  • Nan Zhang


Closely packed lithography is a versatile technology to fabricate different kinds of periodically arranged nanostructures on substrate or in solution. Due to its large diversities and versatilities, it is necessary to predict the shape of the nanostructures under various fabrication conditions. This paper gives a full simulation for the profile of metal nanostructures fabricated by closely packed nanosphere lithography. The simulation applies to both hexagonal and quadrangular nanosphere arrangements, and the nanospheres can be in one layer or stacked in two layers, with each layer having a different size. For metal evaporated at any angle onto the nanosphere mask, three-dimensional metal nanostructures on each layer of the nanosphere as well as the substrate are given. The simulation helps to obtain the desired metal nanostructures by predicting the profiles and facilitating the process design in closely packed lithography, and it is especially beneficial for finding out the profiles of the nanostructures hidden under the nanospheres, which are undetectable without removing the nanosphere layers.


Nanosphere lithography (NSL) Nanospheres Simulation Nanostructures 



We acknowledge IMRE, ASTAR for its financial support of the project “Prostate-specific antigen biosensor with localized surface plasmon resonance (LSPR)”, and Mr. Muhammad Firdauz bin Abdul Rahman and Mr. Lin Jinsheng Alvin for fabricating the gold nanostructures when carrying out their final-year projects in IMRE.


  1. 1.
    Shumaker-Parry JS, Rochholz H, Kreiter M (2005) Fabrication of crescent-shaped optical antennas. Adv Mater 17:2131–2134CrossRefGoogle Scholar
  2. 2.
    Rochholz H, Bocchio N, Kreiter M (2007) Tuning resonances on crescent-shaped noble-metal nanoparticles. New J Phys 9:53CrossRefGoogle Scholar
  3. 3.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4(6):1003–1007CrossRefGoogle Scholar
  4. 4.
    Gao D, Chen W, Mulchandani A, Schultz JS (2007) Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes. Appl Phys Lett 90:073901CrossRefGoogle Scholar
  5. 5.
    Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124CrossRefGoogle Scholar
  6. 6.
    Zhou X, Virasawmy S, Knoll W, Liu KY, Tse MS, Yen LW (2007) Profile simulation and fabrication of gold nanostructures by separated nanospheres with oblique deposition and perpendicular etching. Plasmonics 2:217–230CrossRefGoogle Scholar
  7. 7.
    Zhou X, Knoll W, Liu KY, Tse MS, Oh S, Zhang N (2008) Design and fabrication of gold nanostructures with dispersed nanospheres for localized surface plasmon resonance applications. J Nanophotonics 2:023502CrossRefGoogle Scholar
  8. 8.
    Yang SM, Jang SG, Choi DG, Kim S, Yu HK (2006) Nanomachining by colloidal lithography. Small 2(4):458–475CrossRefGoogle Scholar
  9. 9.
    Tan BJY, Sow CH, Koh TS, Chin KC, Wee ATS, Ong CK (2005) Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing. J Phys Chem B 109(22):11100–11109CrossRefGoogle Scholar
  10. 10.
    Zhang G, Wang D, Möhwald H (2005) Patterning microsphere surfaces by templating colloidal crystals. Nano Lett 5(1):143–146CrossRefGoogle Scholar
  11. 11.
    Zhang G, Wang D, Möhwald H (2006) Nanoembossment of Au patterns on microspheres. Chem Mater 18(17):3985–3992CrossRefGoogle Scholar
  12. 12.
    Zhang G, Wang D, Möhwald H (2007) Ordered binary arrays of Au nanoparticles derived from colloidal lithography. Nano Lett 7(1):127–132CrossRefGoogle Scholar
  13. 13.
    Jensen T, Malinsky M, Haynes C, Van Duyne R (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104(45):10549–10556CrossRefGoogle Scholar
  14. 14.
    Pawar AB, Kretzschma I (2008) Patchy particles by glancing angle deposition. Langmuir 24(2):355–358CrossRefGoogle Scholar
  15. 15.
    Pawar AB, Kretzschmar I (2009) Multifunctional patchy particles by glancing angle deposition. Langmuir, April 29, 2009, doi: 10.1021/la900809b

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaodong Zhou
    • 1
  • Kai Yu Liu
    • 2
  • Wolfgang Knoll
    • 1
  • Chenggen Quan
    • 3
  • Nan Zhang
    • 1
  1. 1.Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations