Plasmonics

, Volume 5, Issue 2, pp 161–167

The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing

  • Jan Becker
  • Andreas Trügler
  • Arpad Jakab
  • Ulrich Hohenester
  • Carsten Sönnichsen
Article

Abstract

The plasmon resonance of metal nanoparticles shifts upon refractive index changes of the surrounding medium through the binding of analytes. The use of this principle allows one to build ultra-small plasmon sensors that can detect analytes (e.g., biomolecules) in volumes down to attoliters. We use simulations based on the boundary element method to determine the sensitivity of gold nanorods of various aspect ratios for plasmonic sensors and find values between 3 and 4 to be optimal. Experiments on single particles confirm these theoretical results. We are able to explain the optimum by showing a corresponding maximum for the quality factor of the plasmon resonance.

Keywords

Plasmon Sensors Nanorods BEM Spectroscopy Nanoparticles Nanocrystals Gold 

References

  1. 1.
    Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088CrossRefGoogle Scholar
  2. 2.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745CrossRefGoogle Scholar
  3. 3.
    Wang HY, Reinhard BM (2009) Monitoring simultaneous distance and orientation changes in discrete dimers of DNA-linked gold nanoparticles. J Phys Chem C 113(26):11215–11222CrossRefGoogle Scholar
  4. 4.
    Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Lett 5(11):2246–2252CrossRefGoogle Scholar
  5. 5.
    Sönnichsen C, Alivisatos AP (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett 5(2):301–304CrossRefGoogle Scholar
  6. 6.
    Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne RP (2009) Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C 113(39):16839–16842CrossRefGoogle Scholar
  7. 7.
    Pierrat S, Hartinger E, Faiss S, Janshoff A, Sonnichsen C (2009) Rotational dynamics of laterally frozen nanoparticles specifically attached to biomembranes. J Phys Chem C 113(26):11179–11183CrossRefGoogle Scholar
  8. 8.
    Schubert O, Becker J, Carbone L, Khalavka Y, Provalska T, Zins I, Sönnichsen C (2008) Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry. Nano Lett 8(8):2345–2350CrossRefGoogle Scholar
  9. 9.
    Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3(10):598–602CrossRefGoogle Scholar
  10. 10.
    Carbone L, Jakab A, Khalavka Y, Sönnichsen C (2009) Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level. Nano Lett 9(11):3710–3714CrossRefGoogle Scholar
  11. 11.
    Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901CrossRefGoogle Scholar
  12. 12.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1–2):3–15CrossRefGoogle Scholar
  13. 13.
    Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZH, Spatz JP, Moller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77(19):2949–2951CrossRefGoogle Scholar
  14. 14.
    Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, Nichtl A, Kurzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3(7):935–938CrossRefGoogle Scholar
  15. 15.
    Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88(7):077402Google Scholar
  16. 16.
    Becker J, Schubert O, Sönnichsen C (2007) Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Lett 7(6):1664–1669CrossRefGoogle Scholar
  17. 17.
    McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062CrossRefGoogle Scholar
  18. 18.
    Baciu CL, Becker J, Janshoff A, Sönnichsen C (2008) Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett 8(6):1724–1728CrossRefGoogle Scholar
  19. 19.
    Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem 110(39):19220–19225Google Scholar
  20. 20.
    Khalavka Y, Becker J, Sönnichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131(5):1871–1875CrossRefGoogle Scholar
  21. 21.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2009) Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Lett. doi:10.1021/nl902621d
  22. 22.
    Becker J, Zins I, Jakab A, Khalavka Y, Schubert O, Sönnichsen C (2008) Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett 8(6):1719–1723CrossRefGoogle Scholar
  23. 23.
    Hohenester U, Krenn J (2005) Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach. Phys. Rev. B 72(19):195429Google Scholar
  24. 24.
    de Abajo FJG, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65(11):115418Google Scholar
  25. 25.
    Burgin J, Liu MZ, Guyot-Sionnest P (2008) Dielectric sensing with deposited gold bipyramids. J Phys Chem 112(49):19279–19282Google Scholar
  26. 26.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038CrossRefGoogle Scholar
  27. 27.
    Johnson PB, Christy RW (1972) Optical Constants of the Noble Metals. Phys Rev B 6(12):4370-4379CrossRefGoogle Scholar
  28. 28.
    Prescott SW, Mulvaney P (2006) Gold nanorod extinction spectra. c 99(12):123504Google Scholar
  29. 29.
    Bryant GW, De Abajo FJG, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8(2):631–636CrossRefGoogle Scholar
  30. 30.
    Liu MZ, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108(19):5882–5888CrossRefGoogle Scholar
  31. 31.
    Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. WileyGoogle Scholar
  32. 32.
    Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67(11–1):351–357CrossRefGoogle Scholar
  33. 33.
    Sönnichsen C (2001) Plasmons in metal nanostructures. Cuvillier Verlag GöttingenGoogle Scholar
  34. 34.
    Lambrecht A, Pirozhenko I, Duraffourg L, Andreucci P (2007) The Casimir effect for silicon and gold slabs. Epl 77(4):44006Google Scholar
  35. 35.
    Cao M, Wang M, Gu N (2009) Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. J Phys Chem C 113(4):1217–1221CrossRefGoogle Scholar
  36. 36.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jan Becker
    • 1
  • Andreas Trügler
    • 2
  • Arpad Jakab
    • 1
  • Ulrich Hohenester
    • 2
  • Carsten Sönnichsen
    • 1
  1. 1.Institute of Physical ChemistryUniversity of MainzMainzGermany
  2. 2.Institute of PhysicsKarl-Franzens University GrazGrazAustria

Personalised recommendations