, Volume 5, Issue 2, pp 135–139 | Cite as

Direct Growth of Optical Antennas Using E-Beam-Induced Gold Deposition

  • Simó Graells
  • Srdjan Aćimović
  • Giorgio Volpe
  • Romain Quidant


Electron beam induced deposition (EBID) is used to grow on a transparent substrate plasmonic antennas formed by gold nanorods. We first discuss the influence of the growth parameters on the geometrical homogeneity of the structures. The optical response of optimized rods with different aspect ratios are measured using scattering spectroscopy. The optical data show antenna resonances in good agreement with 3D numerical simulations for pure gold antennas, validating EBID as a novel relevant technique for the fabrication of plasmonic nanostructures.


Plasmon optics Antennas 



This work was supported by the European Network of Excellence Plasmo-Nano-Devices (Project FP6-2002-IST-1-507879) and the Spanish Ministry of Sciences through grants TEC2007-60186/MIC and


  1. 1.
    Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107(18):3372CrossRefGoogle Scholar
  2. 2.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  3. 3.
    Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945CrossRefGoogle Scholar
  4. 4.
    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Show silver nanowires as surface plasmon resonators. Phys Rev Lett 95:257403CrossRefGoogle Scholar
  5. 5.
    Aizpurua J, Bryant GW, Richter LJ, García de Abajo FJ (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71:235420CrossRefGoogle Scholar
  6. 6.
    Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802CrossRefGoogle Scholar
  7. 7.
    Taminiau TH, Stefani FD, Segerink FB, Van Hulst NF (2008) Optical antennas direct single-molecule emission. Nature Photonics 2:234CrossRefGoogle Scholar
  8. 8.
    Ghenuche P, Cherukulappurath S, Taminiau TH, van Hulst NF, Quidant R (2008) Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett 101:116805CrossRefGoogle Scholar
  9. 9.
    Yu Y-Y, Chang S-S, Lee C-L, Chris Wang CR (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664CrossRefGoogle Scholar
  10. 10.
    Nikoobakht B, Wang ZL, El-Sayed MA (2000) Self-assembly of gold nanorods. J Phys Chem B 104(36):8635–8640CrossRefGoogle Scholar
  11. 11.
    Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, Schaich WL, Puscasu I, Monacelli B, Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:155427CrossRefGoogle Scholar
  12. 12.
    Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607CrossRefGoogle Scholar
  13. 13.
    Randolph SJ, Fowlkes JD, Rack PD (2006) Focused, nanoscale electron-beam-induced deposition and etching. Crit Rev Solid State Mater Sci 31:55–89CrossRefGoogle Scholar
  14. 14.
    Utke I, Hoffmann P, Dwir B, Leifer K, Kapon E, Doppelt P (2000) Focused electron beam induced deposition of gold. J Vac Sci Technol B 18:3168CrossRefGoogle Scholar
  15. 15.
    Koops HWP, Kretz J, Rudolph M, Weber M, Dahm G, Lee KL (1994) Characterization and application of materials grown by electron-beam-induced deposition. Jpn J Appl Phys 33:7099–7107CrossRefGoogle Scholar
  16. 16.
    Koops HWP, Schossler C, Kaya A, Weber M (1996) Conductive dots, wires, and supertips for field electron emitters produced by electron-beam-induced deposition on samples having increased temperature. J Vac Sci Technol B 14:4105–4109CrossRefGoogle Scholar
  17. 17.
    Graells S, Alcubilla R, Badenes G, Quidant R (2007) Growth of plasmonic gold nanostructures by electron beam induced deposition. Appl Phys Lett 91:121112CrossRefGoogle Scholar
  18. 18.
    Botman A, Mulders JJL, Weemaes R, Mentink S (2006) Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 17:3779–3785CrossRefGoogle Scholar
  19. 19.
    Folch A, Tejada J, Peters CH, Wrighton MS (1995) Electron-beam, deposition of gold nanostructures in a reactive environment. Appl Phys Lett 66:2080–2082CrossRefGoogle Scholar
  20. 20.
    Folch A, Servat J, Esteve J, Tejada J, Seco M (1996) High-vacuum versus environmental electron-beam deposition. J Vac Sci Technol B 14:2609–2614CrossRefGoogle Scholar
  21. 21.
    Mølhave K, Madsen DN, Rasmussen AM, Carlsson A, Appel CC, Brorson M, Jacobsen CJH, Bøggild P (2003) Solid gold nanostructures fabricated by electron beam deposition. Nano Lett 3:1499–1503CrossRefGoogle Scholar
  22. 22.
    Van Dorp WF, Lazar S, Hagen CW, Kruit P (2007) Solutions to a proximity effect in high resolution electron beam induced deposition. J Vac Sci Technol B 25(5):1603–1608CrossRefGoogle Scholar
  23. 23.
    Silvis-Cividjian N, Hagen CW, Leunissen LHA, Kruit P (2002) The role of secondary electrons in electron-beam-induced deposition spatial resolution. Microelectron Eng 61–62:693–699CrossRefGoogle Scholar
  24. 24.
    Palik ED (1985) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Simó Graells
    • 1
    • 2
  • Srdjan Aćimović
    • 1
  • Giorgio Volpe
    • 1
  • Romain Quidant
    • 1
    • 3
  1. 1.ICFO-Institut de Ciencies FotoniquesCastelldefels (Barcelona)Spain
  2. 2.Enginyeria La SalleUniversitat Ramon LlullBarcelonaSpain
  3. 3.ICREA-Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations