, Volume 5, Issue 1, pp 99–104

Surface Plasmon Resonances of Metallic Nanostars/Nanoflowers for Surface-Enhanced Raman Scattering

  • Vincenzo Giannini
  • Rogelio Rodríguez-Oliveros
  • Jose A. Sánchez-Gil


We investigate theoretically the optical properties associated to plasmon resonances of metal nanowires with cross section given by low-order Chebyshev nanoparticles (like rounded-tip nanostars or nanoflowers). The impact of the nanoflower shape is analyzed for varying symmetry and deformation parameter through the spectral dependence of resonances and their corresponding near field distributions. Large field intensity enhancements are obtained at the gaps between petals, apart from the tips themselves, which make these nanostars/nanoflowers specially suitable to host molecules for surface-enhanced Raman scattering sensing applications.


Surface plasmons Metal nanoparticles SERS 


  1. 1.
    Haynes CL, McFarland AD, Duyne RPV (2005) Anal Chem 77:338ACrossRefGoogle Scholar
  2. 2.
    Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP (2005) Talanta 67:438CrossRefGoogle Scholar
  3. 3.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Science 308:1607CrossRefGoogle Scholar
  5. 5.
    Jäckel F, Kinkhabwala AA, Moerner WE (2007) Chem Phys Lett 446:339CrossRefGoogle Scholar
  6. 6.
    Muskens OL, Giannini V, Sánchez-Gil JA, Rivas JG (2007) Nano Lett 7:2871CrossRefGoogle Scholar
  7. 7.
    Giannini V, Sánchez-Gil JA (2008) Opt Lett 33:899CrossRefGoogle Scholar
  8. 8.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  9. 9.
    Xu H, Aizpurua J, Käll M, Apell P (2000) Phys Rev E 62:4318CrossRefGoogle Scholar
  10. 10.
    Hao E, Schatz GC (2004) J Chem Phys 120:357CrossRefGoogle Scholar
  11. 11.
    Le Ru E, Etchegoin PG, Meyer MJ (2006) J Chem Phys 125:204701CrossRefGoogle Scholar
  12. 12.
    Nehl CL, Liao H, Hafner H (2006) Nano Lett 6:683CrossRefGoogle Scholar
  13. 13.
    Kumar P, Pastoriza-Santos I, Rodrígues-González B, García-Abajo FJ, Liz-Marzán LM (2008) Nanotechnology 19:015606CrossRefGoogle Scholar
  14. 14.
    Xie J, Zhang Q, Lee JY, Wang DIC (2008) ACS Nano 2:2473CrossRefGoogle Scholar
  15. 15.
    Khoury CG, Vo-Dinh TJ (2008) J Phys Chem C 112:18849Google Scholar
  16. 16.
    Esenturk EN, HightWalker AR (2009) J Raman Spectrosc 40:86CrossRefGoogle Scholar
  17. 17.
    Hrelescu C, Sau TK, Rogach AL, Jackel F, Feldmann J (2009) Appl Phys Lett 94:153113CrossRefGoogle Scholar
  18. 18.
    Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Nano Lett 7:729CrossRefGoogle Scholar
  19. 19.
    Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption and emission of light by small particles. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370CrossRefGoogle Scholar
  21. 21.
    Giannini V, Sánchez-Gil JA (2007) J Opt Soc Am A 24:2822CrossRefGoogle Scholar
  22. 22.
    Sánchez-Gil JA (2003) Phys Rev B 68:113410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vincenzo Giannini
    • 1
  • Rogelio Rodríguez-Oliveros
    • 1
  • Jose A. Sánchez-Gil
    • 1
  1. 1.Instituto de Estructura de la MateriaConsejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Center for NanophotonicsFOM Institute AMOLF, c/o Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations