, Volume 5, Issue 1, pp 57–62 | Cite as

Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure

  • Zheyu Fang
  • Yanwei Lu
  • Linran Fan
  • Chenfang Lin
  • Xing Zhu


The surface plasmon polariton (SPP) coupling and enhancement in silver nanowire–nanoantenna structure is proposed and simulated by using finite difference time domain method. The results demonstrate that three-arm antenna can effectively enhance the coupling efficiency at the incident end and the SPP field intensity at the emission end. The enhancement factor, which is defined as the ratio of the SPP field intensity at the emission end with and without the three-arm antenna, for the various antenna arm lengths and incident wavelengths under different incident angles are calculated. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.


Surface plasmon polariton Waveguide Metal optics Subwavelength structure 



The work is supported by National Science Foundation of China (10574002), National Basic Research Program of China (973 Program; 2007CB936800), and Undergraduate Scientific Training Program Funding of Peking University.


  1. 1.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  2. 2.
    Liu ZW, Wang Y, Yao J, Lee H, Srituravanich W, Zhang X (2008) Broad band two-dimensional manipulation of surface plasmons. Nano Lett 9:462–466CrossRefGoogle Scholar
  3. 3.
    Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale Bowtie apertures. Nano Lett 6:361–364CrossRefGoogle Scholar
  4. 4.
    Dionne JA, Diest K, Swealock LA, Atwater HA (2009) Plasmostor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett 9:897–902CrossRefGoogle Scholar
  5. 5.
    MacDonald KF, Samson ZL, Stockman ML, Zheludev NL (2009) Ultrafast active plasmonics. Nature Photonics 3:55–58CrossRefGoogle Scholar
  6. 6.
    Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1687CrossRefGoogle Scholar
  7. 7.
    Righini M, Zelenina AS, Girard C, Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys 3:477–480CrossRefGoogle Scholar
  8. 8.
    Fang ZY, Lin F, Huang S, Song WT, Zhu X (2009) Focusing surface plasmon polariton trapping of colloidal particles. Appl Phys Lett 94:063306CrossRefGoogle Scholar
  9. 9.
    Ozbay E (2006) Nanoscale dimensions plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  10. 10.
    Miyazaki HT, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401CrossRefGoogle Scholar
  11. 11.
    Barnes W, Dereux LA, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  12. 12.
    Fang ZY, Zhang XJ, Liu D, Zhu X (2008) Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. Appl Phys Lett 93:073306CrossRefGoogle Scholar
  13. 13.
    Passinger S, Seidel A, Ohrt C, Reinhardt C, Stepanov A, Kiyan R, Chichkov BN (2008) Novel efficient design of Y-splitter for surface plasmon polariton applications. Opt Express 16:14369–14379CrossRefGoogle Scholar
  14. 14.
    Fang ZY, Huang S, Lin F, Zhu X (2009) Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Opt Express 17:20327–20332CrossRefGoogle Scholar
  15. 15.
    Fang ZY, Dai T, Fu Q, Zhang B, Zhu X (2009) Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal. J Microscopy 235:138–143CrossRefGoogle Scholar
  16. 16.
    Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104:6095–6908CrossRefGoogle Scholar
  17. 17.
    Pyayt AL, Wiley B, Xia YN, Chen AT, Dalton L (2008) Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotechnology 3:660–665CrossRefGoogle Scholar
  18. 18.
    Muhlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607CrossRefGoogle Scholar
  19. 19.
    Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94:017402CrossRefGoogle Scholar
  20. 20.
    Fromm DP, Sundaramurthy A, Schuck P, Kino GS, Moerner WE (2004) Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett 4:957–961CrossRefGoogle Scholar
  21. 21.
    Greffet JJ (2005) Nanoantennas for light emission. Science 308:1561–1562CrossRefGoogle Scholar
  22. 22.
    Zayatsa AV, Smolyaninovb II, Maradudinc AA (2005) Nano-optics of surface plasmon polaritons. Physics Reports 408:131–314CrossRefGoogle Scholar
  23. 23.
    Palik ED (1985) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  24. 24.
    Kunz KS, Luebbers RJ (2003) The finite difference time domain method for electromagnetics. CRC, Boca RatonGoogle Scholar
  25. 25.
    Jackson JD (1999) Classical electrodynamics, 3rd edn. Academic, New YorkGoogle Scholar
  26. 26.
    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95:257403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zheyu Fang
    • 1
  • Yanwei Lu
    • 1
  • Linran Fan
    • 1
  • Chenfang Lin
    • 1
  • Xing Zhu
    • 1
    • 2
  1. 1.School of Physics, State Key Laboratory for Mesoscopic PhysicsPeking UniversityBeijingChina
  2. 2.National Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations