, Volume 5, Issue 1, pp 51–55 | Cite as

Impedance-Matching Surface Plasmon Absorber for FDTD Simulations

  • Chien-Chang Chao
  • Sheng-Han Tu
  • Chih-Ming Wang
  • Hung-I Huang
  • Chii-Chang Chen
  • Jenq-Yang Chang


The perfectly matched layer (PML) can be used as an excellent boundary in the finite-difference time-domain method; however, it fails to absorb surface plasmon (SP) wave directly. In order to absorb an incident SP wave at the edge of a metal surface, an impedance-matching layer (IML) is implemented between the metal surface and the PML. A very low SP wave reflectance of −26.54 dB is achieved through the use of an IML with a length of only λ/3. The IML significantly reduces SP wave reflectance and creates a quasi-infinite regime for the purpose of SP wave propagation on the metal’s surface while the acquired simulation area undergoes a slight increase.


Surface plasmons Optical processing Impedance-matching layer 



The authors are grateful for the financial support of this research received from the National Science Council of Taiwan, Republic of China.


  1. 1.
    Sullivan DM (2000) Electromagnetic simulation using the FDTD method. IEEE Press, PiscatawayCrossRefGoogle Scholar
  2. 2.
    Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200CrossRefGoogle Scholar
  3. 3.
    Wu Z, Fang J (1995) Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures. IEEE Trans Microwave Theor Tech 43:2676–2683CrossRefGoogle Scholar
  4. 4.
    Rappaport CM (1995) Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space. IEEE Microw Guided Wave Lett 5:90–92CrossRefGoogle Scholar
  5. 5.
    Chen B, Fang DG, Zhou BH (1995) Modified Berenger PML absorbing boundary condition for FD-TD meshes. IEEE Microw Guided Wave Lett 5:399–401CrossRefGoogle Scholar
  6. 6.
    Sacks ZS, Kingsland DM, Lee R, Lee JF (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43:1460–1463CrossRefGoogle Scholar
  7. 7.
    Sullivan DM (1996) A simplified PML for use with the FDTD method. IEEE Microw Guided Wave Lett 6:97–99CrossRefGoogle Scholar
  8. 8.
    Fang J, Wu Z (1996) Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media. IEEE Trans Microwave Theor Tech 44:2216–2222CrossRefGoogle Scholar
  9. 9.
    Roden JA, Gedney SD (2000) Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Technol Lett 27:334–339CrossRefGoogle Scholar
  10. 10.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  11. 11.
    Berenger JP (2002) Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs. IEEE Trans Antennas Propag 50:258–265CrossRefGoogle Scholar
  12. 12.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  13. 13.
    Gedney SD (1996) An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media. Electromagnetics 16(4):399–415CrossRefGoogle Scholar
  14. 14.
    Zhao AP (1998) Application of the material independent PML absorbers to the FDTD analysis of electromagnetic waves in nonlinear media. Microw Opt Technol Lett 17(3):164–168CrossRefGoogle Scholar
  15. 15.
    Fan GX, Liu QH (2000) An FDTD algorithm with perfectly matched layers for general dispersive media. IEEE Trans Antennas Propag 48(5):637–646CrossRefGoogle Scholar
  16. 16.
    Fujii M, Russer P (2002) A nonlinear and dispersive APML ABC for the FDTD methods. IEEE Microw Wirel Compon Lett 12(11):444–446CrossRefGoogle Scholar
  17. 17.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic Press, San DiegoGoogle Scholar
  18. 18.
    Sánchez-Gil JA, Maradudin AA (1999) Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 60:8359CrossRefGoogle Scholar
  19. 19.
    Gordon R (2006) Vectorial method for calculating the fresnel reflection of surface plasmon polaritons. Phys Rev B 74:153417CrossRefGoogle Scholar
  20. 20.
    Wang CM, Huang HI, Chao CC, Chang JY, Sheng Y (2007) Transmission enhancement through a trench-surrounded nano metallic slit by bump reflectors. Opt Express 15:3496–3501CrossRefGoogle Scholar
  21. 21.
    Goto K (2007) Nanofabrication and evanescent light enhancement by surface plasmon. IEEE Trans Magn 43:851–855CrossRefGoogle Scholar
  22. 22.
    Wang CM, Chao CC, Huang HI, Ung B, Sheng Y, Chang JY (2008) Transmission enhancement through a metallic slit assisted by low scattering loss corrugations. Opt Commun 281:2996–2999CrossRefGoogle Scholar
  23. 23.
    Min Q, Gordon R (2008) Surface plasmon microcavity for resonant transmission through a slit in a gold film. Opt Express 16:9708–9713CrossRefGoogle Scholar
  24. 24.
    Polman A (2008) Plasmonics applied. Science 322:868–869CrossRefGoogle Scholar
  25. 25.
    Qi Y, Gan D, Ma J, Cui J, Wang C, Luo X (2009) Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides. Appl Phys B 95:807–812CrossRefGoogle Scholar
  26. 26.
    Guo B, Song G, Chen L (2009) Resonant enhanced wave filter and waveguide via surface plasmons. IEEE Trans Nanotechnol 8:408–411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chien-Chang Chao
    • 1
  • Sheng-Han Tu
    • 1
  • Chih-Ming Wang
    • 2
  • Hung-I Huang
    • 1
  • Chii-Chang Chen
    • 1
  • Jenq-Yang Chang
    • 1
  1. 1.Department of Optics and PhotonicsNational Central UniversityJhongliRepublic of China
  2. 2.Institute of Opto-Electronic EngineeringNational Dong Hwa UniversityHualienRepublic of China

Personalised recommendations