, Volume 5, Issue 1, pp 51–55

Impedance-Matching Surface Plasmon Absorber for FDTD Simulations

  • Chien-Chang Chao
  • Sheng-Han Tu
  • Chih-Ming Wang
  • Hung-I Huang
  • Chii-Chang Chen
  • Jenq-Yang Chang


The perfectly matched layer (PML) can be used as an excellent boundary in the finite-difference time-domain method; however, it fails to absorb surface plasmon (SP) wave directly. In order to absorb an incident SP wave at the edge of a metal surface, an impedance-matching layer (IML) is implemented between the metal surface and the PML. A very low SP wave reflectance of −26.54 dB is achieved through the use of an IML with a length of only λ/3. The IML significantly reduces SP wave reflectance and creates a quasi-infinite regime for the purpose of SP wave propagation on the metal’s surface while the acquired simulation area undergoes a slight increase.


Surface plasmons Optical processing Impedance-matching layer 


  1. 1.
    Sullivan DM (2000) Electromagnetic simulation using the FDTD method. IEEE Press, PiscatawayCrossRefGoogle Scholar
  2. 2.
    Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200CrossRefGoogle Scholar
  3. 3.
    Wu Z, Fang J (1995) Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures. IEEE Trans Microwave Theor Tech 43:2676–2683CrossRefGoogle Scholar
  4. 4.
    Rappaport CM (1995) Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space. IEEE Microw Guided Wave Lett 5:90–92CrossRefGoogle Scholar
  5. 5.
    Chen B, Fang DG, Zhou BH (1995) Modified Berenger PML absorbing boundary condition for FD-TD meshes. IEEE Microw Guided Wave Lett 5:399–401CrossRefGoogle Scholar
  6. 6.
    Sacks ZS, Kingsland DM, Lee R, Lee JF (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43:1460–1463CrossRefGoogle Scholar
  7. 7.
    Sullivan DM (1996) A simplified PML for use with the FDTD method. IEEE Microw Guided Wave Lett 6:97–99CrossRefGoogle Scholar
  8. 8.
    Fang J, Wu Z (1996) Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media. IEEE Trans Microwave Theor Tech 44:2216–2222CrossRefGoogle Scholar
  9. 9.
    Roden JA, Gedney SD (2000) Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Technol Lett 27:334–339CrossRefGoogle Scholar
  10. 10.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  11. 11.
    Berenger JP (2002) Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs. IEEE Trans Antennas Propag 50:258–265CrossRefGoogle Scholar
  12. 12.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  13. 13.
    Gedney SD (1996) An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media. Electromagnetics 16(4):399–415CrossRefGoogle Scholar
  14. 14.
    Zhao AP (1998) Application of the material independent PML absorbers to the FDTD analysis of electromagnetic waves in nonlinear media. Microw Opt Technol Lett 17(3):164–168CrossRefGoogle Scholar
  15. 15.
    Fan GX, Liu QH (2000) An FDTD algorithm with perfectly matched layers for general dispersive media. IEEE Trans Antennas Propag 48(5):637–646CrossRefGoogle Scholar
  16. 16.
    Fujii M, Russer P (2002) A nonlinear and dispersive APML ABC for the FDTD methods. IEEE Microw Wirel Compon Lett 12(11):444–446CrossRefGoogle Scholar
  17. 17.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic Press, San DiegoGoogle Scholar
  18. 18.
    Sánchez-Gil JA, Maradudin AA (1999) Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 60:8359CrossRefGoogle Scholar
  19. 19.
    Gordon R (2006) Vectorial method for calculating the fresnel reflection of surface plasmon polaritons. Phys Rev B 74:153417CrossRefGoogle Scholar
  20. 20.
    Wang CM, Huang HI, Chao CC, Chang JY, Sheng Y (2007) Transmission enhancement through a trench-surrounded nano metallic slit by bump reflectors. Opt Express 15:3496–3501CrossRefGoogle Scholar
  21. 21.
    Goto K (2007) Nanofabrication and evanescent light enhancement by surface plasmon. IEEE Trans Magn 43:851–855CrossRefGoogle Scholar
  22. 22.
    Wang CM, Chao CC, Huang HI, Ung B, Sheng Y, Chang JY (2008) Transmission enhancement through a metallic slit assisted by low scattering loss corrugations. Opt Commun 281:2996–2999CrossRefGoogle Scholar
  23. 23.
    Min Q, Gordon R (2008) Surface plasmon microcavity for resonant transmission through a slit in a gold film. Opt Express 16:9708–9713CrossRefGoogle Scholar
  24. 24.
    Polman A (2008) Plasmonics applied. Science 322:868–869CrossRefGoogle Scholar
  25. 25.
    Qi Y, Gan D, Ma J, Cui J, Wang C, Luo X (2009) Spectrally selective splitters with metal-dielectric-metal surface plasmon waveguides. Appl Phys B 95:807–812CrossRefGoogle Scholar
  26. 26.
    Guo B, Song G, Chen L (2009) Resonant enhanced wave filter and waveguide via surface plasmons. IEEE Trans Nanotechnol 8:408–411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chien-Chang Chao
    • 1
  • Sheng-Han Tu
    • 1
  • Chih-Ming Wang
    • 2
  • Hung-I Huang
    • 1
  • Chii-Chang Chen
    • 1
  • Jenq-Yang Chang
    • 1
  1. 1.Department of Optics and PhotonicsNational Central UniversityJhongliRepublic of China
  2. 2.Institute of Opto-Electronic EngineeringNational Dong Hwa UniversityHualienRepublic of China

Personalised recommendations