Plasmonics

, Volume 5, Issue 1, pp 21–29

Preparation, Optimization, and Characterization of SERS Sensor Substrates Based on Two-Dimensional Structures of Gold Colloid

  • Tahereh Makiabadi
  • Audrey Bouvrée
  • Victor Le Nader
  • Hélène Terrisse
  • Guy Louarn
Article

Abstract

Generally, the immobilization of two-dimensional nanoparticles in immersion procedures is time-consuming (over 24 h). In this paper, we report a very effective and simple method to fabricate two-dimensional gold nanoparticle patterns over large areas with high regularity for surface-enhanced Raman scattering (SERS). We achieved a highly sensitive SERS colloid surface by optimizing temperature and immersion time. The surfaces were characterized by X-ray photoelectron spectroscopy, UV–Vis, atomic force microscopy, and scanning electron microscopy. The SERS activity of surfaces was compared by using two techniques: “dip” and “dip and dry” in an aqueous solution of 10−6 M crystal violet. The influence of the morphology of the surface was investigated with both the dip and dip and dry techniques.

Keywords

Gold nanostructures Surface-enhanced Raman scattering SERS Plasmon resonance 

References

  1. 1.
    Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans II 75:790–798CrossRefGoogle Scholar
  2. 2.
    Novotny L, Hecht B (2006) Principles of nano-optics. University Press, CambridgeGoogle Scholar
  3. 3.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  4. 4.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Baibarac M, Mihut L, Louarn G, Mevellec JY, Wery J, Lefrant S, Baltog I (1999) Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. J Raman Spectrosc 30:1105–1113CrossRefGoogle Scholar
  6. 6.
    Lefrant S, Baltog I, Lamy De La Chapelle M, Baibarac M, Louarn G, Journet C, Bernier P (1998) Studies by SERS spectroscopy of the structural properties of conducting polymers and carbon nanotubes. Synth Met 101(1–3):184–187Google Scholar
  7. 7.
    Chaigneau M, Balaa K, Minea T, Louarn G (2007) Plasmon resonance microsensor for droplet analysis. Optics Lett 32(16):2435–2437CrossRefGoogle Scholar
  8. 8.
    Toderas F, Baia M, Baia L, Astilean S (2007) Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors. Nanotechnology 18:255702CrossRefGoogle Scholar
  9. 9.
    Sun CQ (2009) Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci 54:179–307CrossRefGoogle Scholar
  10. 10.
    Viswanath B, Kundu P, Ravishankar N (2009) Predicting the growth of two-dimensional nanostructures. J Colloid Interface Sci 330:211–219CrossRefGoogle Scholar
  11. 11.
    Baibarac M, Mihut L, Louarn G, Lefrant S, Baltog Y (2000) Doping and metallic-support effect evidenced on SERS spectra of polyaniline thin films. J Polym Sci B Polym Phys 38(19):2599–2609CrossRefGoogle Scholar
  12. 12.
    Grand J, Adam P-M, Grimault A-S, Vial A, Lamy M, de la Chapelle J-L, Bijeon SK, Royer P (2006) Optical extinction spectroscopy of oblate prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics 1(2–4):135–140CrossRefGoogle Scholar
  13. 13.
    Hossain MK, Shibamoto K, Ishioka K, Kitajima M, Mitani T, Nakashima S (2007) 2D nanostructure of gold nanoparticles: an approach to SERS-active substrate. J Lumin 122–123:792–795CrossRefGoogle Scholar
  14. 14.
    Lee FY, Fung KH, Tang TL, Tam WY (2008) Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography. Curr Appl Phys 9(4):820–825CrossRefGoogle Scholar
  15. 15.
    Grabar KC, Allison KJ, Baker BE (1996) Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir 12(10):2353–2361CrossRefGoogle Scholar
  16. 16.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67(4):735–743CrossRefGoogle Scholar
  17. 17.
    de Santana H, Zaia DAM, Corio P, El Haber F, Louarn G (2006) Preparation and characterization of SERS-active substrates: a study of the crystal violet adsorption on silver nanoparticles. Quim Nova 29(2):194–199Google Scholar
  18. 18.
    Zhu T, HZ Yu, Wang J, Wang YQ, Cai SM, Liu ZF (1997) Two-dimensional surface enhanced Raman mapping of differently prepared gold substrates with an azobenzene self-assembled monolayer. Chem Phys Lett 265:334–340CrossRefGoogle Scholar
  19. 19.
    Hajduková N, Procházka M, Štěpánek J, Špírková M (2007) Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: preparation, characterization and SERS spectral testing. Colloids Surf A: Physicochem Eng Asp 301:264–270CrossRefGoogle Scholar
  20. 20.
    Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18–52Google Scholar
  21. 21.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  22. 22.
    Lucotti A, Zerbi G (2007) Fiber-optic SERS sensor with optimized geometry. Sens Actuators B Chem 121:356–364CrossRefGoogle Scholar
  23. 23.
    Yang Y, Nojami M, Shi J, Chen H, Ma G, Tang S (2005) Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped au composite nanoparticles. J Phys Chem B 109:4865–4871CrossRefGoogle Scholar
  24. 24.
    Hostetler MJ, Wingate J, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30CrossRefGoogle Scholar
  25. 25.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22Google Scholar
  26. 26.
    Schulz LG (1954) The optical constants of silver, gold, copper, and aluminum. the absorption coefficient k and the index of refraction n. J Opt Soc Am 44:357–367CrossRefGoogle Scholar
  27. 27.
    Haynes CL, McFarland AD, Zhao LL, Schatz GC, Van Duyne RP, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342CrossRefGoogle Scholar
  28. 28.
    Vidhu S, Tiwari B, Oleg T (2007) Non-resonance SERS effects of silver colloids with different shapes. Chem Phys Lett 446:77–82CrossRefGoogle Scholar
  29. 29.
    Ujvári T, Kolitsch A, Tóth A, Mohai M, Bertóti I (2002) XPS characterization of the composition and bonding states of elements in CNx layers prepared by ion beam assisted deposition. Diamond Relat Mater 11:1149–1152CrossRefGoogle Scholar
  30. 30.
    Beamson G, Briggs D (1992) High resolution XPS of organic polymers the scienta ESCA300 database. Wiley, ChichesterGoogle Scholar
  31. 31.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  32. 32.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  33. 33.
    Baudhin P, Van der Smissen P, Beauvois S, Courtoy P (1989) Preparation and characterization of Au colloid monolayers, colloidal gold: principles, methods, and applications. In: Hayat MA (ed) Academic, San Diego, 2, 2–17Google Scholar
  34. 34.
    Brown RJC, Wang J, Tantra R, Yardley RE, Milton MJT (2006) Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS. Faraday Discuss 132:201–213CrossRefGoogle Scholar
  35. 35.
    Basu S, Kumar Ghosh S (2007) Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling. J Colloid Interface Sci 313:724–734CrossRefGoogle Scholar
  36. 36.
    Ghosh SK, Kundu S, Mandal M, Nath S, Pal T (2003) Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J Nanopart Res 5:577–587CrossRefGoogle Scholar
  37. 37.
    Canamares MV, Chenal C, Birke RL, Lombardi JR (2008) DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C 112:20295–20300CrossRefGoogle Scholar
  38. 38.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tahereh Makiabadi
    • 1
    • 2
  • Audrey Bouvrée
    • 1
  • Victor Le Nader
    • 1
  • Hélène Terrisse
    • 1
  • Guy Louarn
    • 1
  1. 1.Institut des Matériaux Jean Rouxel (IMN), CNRSUniversité de NantesNantes cedex 3France
  2. 2.Shahid Bahonar University of KermanKermanIran

Personalised recommendations