, Volume 4, Issue 3, pp 237–243 | Cite as

Tuning Optical Discs for Plasmonic Applications

  • Burkan Kaplan
  • Hasan Guner
  • Ozlem Senlik
  • Kemal Gurel
  • Mehmet Bayindir
  • Aykutlu DanaEmail author


We present simple physical and chemical procedures that allow tuning and modification of the topography of gratings present in optical storage discs into geometries optimal for grating coupled plasmon resonance excitation. After proper metal coating, the tuned surfaces exhibit sharp plasmon resonances that can be excited at wavelengths ranging from 260 nm to over 2.7 μm with relatively high quality factors. As an immediate exemplary application, use of such optimized gratings in aqueous medium for refractive index measurement is demonstrated.


Diffraction gratings Surface plasmons Plasmonics 



This work is supported by TUBITAK under Project No. 106T348, 106G090, and 107T547. MB acknowledges support from the Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA GEBIP). This work was performed at the UNAM-Institute of Materials Science and Nanotechnology, which is supported by the State Planning Organization of Turkey through the National Nanotechnology Research Center Project.


  1. 1.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Action B 54:3–15CrossRefGoogle Scholar
  2. 2.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7CrossRefGoogle Scholar
  3. 3.
    Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62(24):16356–16359CrossRefGoogle Scholar
  4. 4.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101CrossRefGoogle Scholar
  5. 5.
    Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silvernanoparticles. Nat Mater 1:169–172CrossRefGoogle Scholar
  6. 6.
    Kocabas A, Ertas G, Senlik SS, Aydinli A (2008) Plasmonic band gap structures for surface-enhanced Raman scattering. Opt Express 16(17):12469–12477CrossRefGoogle Scholar
  7. 7.
    Kocabas A, Senlik SS, Aydinli A (2008) Plasmonic band gap cavities on biharmonic gratings. Phys Rev B 77(19):195130CrossRefGoogle Scholar
  8. 8.
    Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875CrossRefGoogle Scholar
  9. 9.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRefGoogle Scholar
  10. 10.
    Singh BK, Hillier AC (2006) Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem 78(6):2009–2018CrossRefGoogle Scholar
  11. 11.
    Maier SA (2006) Plasmonics: the promise of highly integrated optical devices. IEEE J Sel Top Quant Electron 12(6):1671–1677CrossRefGoogle Scholar
  12. 12.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  13. 13.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings, chapter 6. Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Maier SA (2007) Plasmonics: fundamentals and applications, chapter 5. Springer, New YorkGoogle Scholar
  15. 15.
    Fontana E (2004) Theoretical and experimental study of the surface plasmon resonance effect on a recordable compact disk. Appl Opt 43(1):79–87CrossRefGoogle Scholar
  16. 16.
    Sedoglavich N, Kunnemeyer R, Talele SR, Sharpe JC (2008) Phase-polarisation contrast for surface plasmon resonance based on low cost grating substrates. Current Applied Physics 8:351–354CrossRefGoogle Scholar
  17. 17.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface enhanced Raman scattering and biophysics. J Phys Chem 14:597–624Google Scholar
  18. 18.
    Kahl M, Voges E (2000) Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61(20):14078–14088CrossRefGoogle Scholar
  19. 19.
    Mank AJG, Kuiper AET, Nulens HAG, Feddes B, Wei G (2007) Detection of recording marks on digital versatile discs and blu-ray discs using conductive atomic force microscopy. Jpn J Appl Phys 46(9A):5813–5820CrossRefGoogle Scholar
  20. 20.
    Gurel K, Kaplan B, Guner H, Bayindir M, Dana A (2009) A compact filter based on anomalous transmission in grating coupled plasmon resonance. Appl Phys Lett (in press)Google Scholar
  21. 21.
    Homola J, Koudelab I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Act B 54:16–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Burkan Kaplan
    • 1
  • Hasan Guner
    • 1
  • Ozlem Senlik
    • 1
  • Kemal Gurel
    • 1
  • Mehmet Bayindir
    • 1
    • 2
  • Aykutlu Dana
    • 1
    Email author
  1. 1.UNAM-Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  2. 2.Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations