Plasmonics

, Volume 4, Issue 2, pp 187–192 | Cite as

SERS Study of Tetrodotoxin (TTX) by Using Silver Nanoparticle Arrays

  • Wen-Chi Lin
  • Hsiao-Chin Jen
  • Chang-Long Chen
  • Deng-Fwu Hwang
  • Railing Chang
  • Jih-Shang Hwang
  • Hai-Pang Chiang
Article

Abstract

The optical properties of tetrodotoxin (TTX), a scarce toxin with anesthetic properties, were studied using nanoparticle arrays-assisted surface-enhanced Raman scattering (SERS). The nanoparticles arrays were fabricated using nanosphere lithography and a metallic lift-off process to control the particle size, shape, and spacing in the arrays. Using density functional methods, the Raman spectrum of TTX was also calculated with Gaussian03 software. The main peaks of the spectrum are originated from the vibration of the NH2 molecule group. In the SERS experiment, we were able to measure the Raman spectrum with a TTX concentration as less as 0.9 ng/mL. This sensitivity is comparable to that from high performance liquid chromatography.

Keywords

Surface enhaced Raman scattering (SERS) Tetrodotoxin (TTX) Nanosphere lithography (NSL) Ag nanoparticle arrays Density functional theory (DFT) 

References

  1. 1.
    Hwang DF, Noguchi T (2007) Tetrodotoxin poisoning. Adv Food Nutr Res 52:141–236. doi:10.1016/S1043-4526(06) 52004-2 CrossRefGoogle Scholar
  2. 2.
    Lin SJ, Hwang DF, Shao KT, Jeng SS (2000) Toxicity of Taiwanese gobies. Fish Sci 66:547–557. doi:10.1046/j.1444-2906.2000.00086.x CrossRefGoogle Scholar
  3. 3.
    Lin SJ, Hwang DF (2001) Possible source of tetrodotoxin in the starfish Astropecten scoparius. Toxicon 39:573–579. doi:10.1016/S0041-0101(00) 00171-9 CrossRefGoogle Scholar
  4. 4.
    Hwang DF (2003) Research on marine toxins in Taiwan. J Toxicol Toxin Rev 22:663–678Google Scholar
  5. 5.
    Hwang DF, Jeng SS (1991) Bioassay of tetrodotoxin by using ICR strain male mouse. J Chin Biochem Soc 20:80–86Google Scholar
  6. 6.
    Kawatsu K, Shibata T, Hamano Y (1999) Application of immunoaffinity chromatography for detection of tetrodotoxin from urine samples of poisoned patients. Toxicon 37:325–333. doi:10.1016/S0041-0101(98) 00116-0 CrossRefGoogle Scholar
  7. 7.
    Jen HC, Lin SJ, Lin SY, Hwang YW, Liao IC, Arakawa O, Hwang DF (2007) Occurrence of tetrodotoxin and paralytic shellfish poisons in a gastropod implicated in food poisoning in southern Taiwan. Food Addit Contam 24:902–909. doi:10.1080/02652030701245171 CrossRefGoogle Scholar
  8. 8.
    Tsai YH, Hwang DF, Cheng CA, Hwang CC, Deng JF (2006) Determination of tetrodotoxin in human urine and blood using C18 cartridge column, ultrafitration and LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 832:75–80. doi:10.1016/j.jchromb.2005.12.036 CrossRefGoogle Scholar
  9. 9.
    Jen HS, Lin SJ, Tsai YH, Chen CH, Lin ZC, Hwang DF (2008) Tetrodotoxin poisoning evidenced by solid-phase extraction combining with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 871:95–100. doi:10.1016/j.jchromb.2008.06.030 CrossRefGoogle Scholar
  10. 10.
    Chao YC, Jin R, Mirkin CA (2002) Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540. doi:10.1126/science.297.5586.1536 CrossRefGoogle Scholar
  11. 11.
    Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced raman spectroscopy. Anal Chem 78:7211–7215. doi:10.1021/ac061238u CrossRefGoogle Scholar
  12. 12.
    Fang C, Agarwal A, Buddharajua KD (2008) DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label. Biosens Bioelectron 24:216–221. doi:10.1016/j.bios.2008.03.032 CrossRefGoogle Scholar
  13. 13.
    Baia L, Baia B, Popp J, Astilean S (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110:23982–23986. doi:10.1021/jp064458k CrossRefGoogle Scholar
  14. 14.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241. doi:10.1039/a827241z CrossRefGoogle Scholar
  15. 15.
    Campion A, Ivanecky JEIII, Child CM, Foster M (1995) On the mechanism of chemical enhancement in surface-enhanced Raman scattering. J Am Chem Soc 117:11807–11808. doi:10.1021/ja00152a024 CrossRefGoogle Scholar
  16. 16.
    Chiang HP, Leung PT, Tse WS (2000) Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering. J Phys Chem B 104:2348–2350. doi:10.1021/jp993371e CrossRefGoogle Scholar
  17. 17.
    Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–348Google Scholar
  18. 18.
    Grand J, Kostcheev S, Bijeon JL, de la Lamy CM, Adam PM, Rumyantseva A, Lérondel G, Royer P (2003) Optimization of SERS-active substrates for near-field Raman spectroscopy. Synth Met 139:621–624. doi:10.1016/S0379-6779(03) 00276-5 CrossRefGoogle Scholar
  19. 19.
    Sackmann M, Bom S, Balster T, Materny A (2007) Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy. J Raman Spectrosc 38:277–282. doi:10.1002/jrs.1639 CrossRefGoogle Scholar
  20. 20.
    Kim JD, Ahn DG, Oh JW, Park W, Jung H (2008) Ribosome display and dip-pen nanolithography for the fabrication of protein nanoarrays. Adv Mater 20:3349–3353. doi:10.1002/adma.200800027 CrossRefGoogle Scholar
  21. 21.
    Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103:9846–9853. doi:10.1021/jp9926802 CrossRefGoogle Scholar
  22. 22.
    Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863. doi:10.1021/jp9904771 CrossRefGoogle Scholar
  23. 23.
    Hulteen JC, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611. doi:10.1021/jp010657m CrossRefGoogle Scholar
  24. 24.
    Chiang HP, Mou B, Li KP, Chiang P, Wang D, Lin SJ, Tse WS (2001) FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part I—a density functional theory study of benzo(a)pyrene (BaP) and benzo(e)pyrene (BeP). J Raman Spectrosc 32:45–51. doi:10.1002/1097-4555(200101)32:1<45::AID-JRS666>3.0.CO;2-9 CrossRefGoogle Scholar
  25. 25.
    Chiang HP, Mou B, Li KP, Chiang P, Wang D, Lin SJ, Tse WS (2001) FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part II—a theoretical study of the transition states of oxygenation of benzo(a)pyrene (BaP). J Raman Spectrosc 32:53–58. doi:10.1002/1097-4555(200101)32:1<53::AID-JRS667>3.0.CO;2-B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wen-Chi Lin
    • 1
  • Hsiao-Chin Jen
    • 2
  • Chang-Long Chen
    • 1
  • Deng-Fwu Hwang
    • 2
  • Railing Chang
    • 1
  • Jih-Shang Hwang
    • 1
  • Hai-Pang Chiang
    • 1
    • 3
  1. 1.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungTaiwan
  2. 2.Institute of Food SciencesNational Taiwan Ocean UniversityKeelungTaiwan
  3. 3.Institute of PhysicsAcademia SinicaTaipeiTaiwan

Personalised recommendations