Advertisement

Plasmonics

, Volume 4, Issue 2, pp 171–179 | Cite as

Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications

  • Claire M. Cobley
  • Sara E. Skrabalak
  • Dean J. Campbell
  • Younan Xia
Article

Abstract

The localized surface plasmon resonance of a silver nanoparticle is responsible for its ability to strongly absorb and scatter light at specific wavelengths. The absorption and scattering spectra (i.e., plots of cross sections as a function of wavelength) of a particle can be predicted using Mie theory (for a spherical particle) or the discrete dipole approximation method (for particles in arbitrary shapes). In this review, we briefly discuss the calculated spectra for silver nanoparticles with different shapes and the synthetic methods available to produce these nanoparticles. As validated in recent studies, there is good agreement between the theoretically calculated and the experimentally measured spectra. We conclude with a discussion of new plasmonic and sensing applications enabled by the shape-controlled nanoparticles.

Keywords

Surface plasmon resonance Silver nanostructures Shape control Surface enhanced Raman spectroscopy Sensing 

Notes

Acknowledgment

This work was supported in part by NSF (DMR-0451788) and ACS (PRF-44353-AC10).

References

  1. 1.
    Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30(5):368–375Google Scholar
  2. 2.
    Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760CrossRefGoogle Scholar
  3. 3.
    Velev OD, Kaler EW (1999) In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15(11):3693–3698CrossRefGoogle Scholar
  4. 4.
    McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):7426–7433CrossRefGoogle Scholar
  5. 5.
    Alivisatos AP (2005) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–51CrossRefGoogle Scholar
  6. 6.
    Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107(30):7426–7433. doi: 10.1021/jp027749b CrossRefGoogle Scholar
  7. 7.
    Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272(5259):255–258CrossRefGoogle Scholar
  8. 8.
    Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540. doi: 10.1126/science.297.5586.1536 CrossRefGoogle Scholar
  9. 9.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol. 25. Springer, BerlinGoogle Scholar
  10. 10.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem 262(2):137–156. doi: 10.1006/abio.1998.2759 CrossRefGoogle Scholar
  11. 11.
    Quinten M (2001) Local fields close to the surface of nanoparticles and aggregates of nanoparticles. Appl Phys B 73(3):245–255Google Scholar
  12. 12.
    Schwartzberg AM, Grant CD, Wolcot A, Talley CE, Huser TR, Bogomolni R, Zhang JZ (2004) Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J Phys Chem B 108(50):19191–19197. doi: 10.1021/jp048430p CrossRefGoogle Scholar
  13. 13.
    Halas NJ (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30(5):362–367Google Scholar
  14. 14.
    Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface Plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110(32):15666–15675. doi: 10.1021/jp0608628 CrossRefGoogle Scholar
  15. 15.
    Sun Y, Xia Y (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst (Lond) 128:686–691CrossRefGoogle Scholar
  16. 16.
    Wiley BJ, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40(10):1067–1076. doi: 10.1021/ar7000974 CrossRefGoogle Scholar
  17. 17.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325. doi: 10.1002/smll.200701295 CrossRefGoogle Scholar
  18. 18.
    Mie G (1908) Contribution to the optical properties of turbid media, in particular of colloidal suspensions of metals. Anal Phys Leipzig 25:377–452. doi: 10.1002/andp.19083300302 CrossRefGoogle Scholar
  19. 19.
    Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491–1499. doi: 10.1364/JOSAA.11.001491 CrossRefGoogle Scholar
  20. 20.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B 64(23):235402–235410CrossRefGoogle Scholar
  21. 21.
    Fuchs R (1975) Theory of the optical properties of ionic crystal cubes. Phys Rev B 11(4):1732–1740. doi: 10.1103/PhysRevB.11.1732 CrossRefGoogle Scholar
  22. 22.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectic environment. J Phys Chem B 107(3):668–677. doi: 10.1021/jp026731y CrossRefGoogle Scholar
  23. 23.
    Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li ZY, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7(4):1032–1036. doi: 10.1021/nl070214f CrossRefGoogle Scholar
  24. 24.
    Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077–20781CrossRefGoogle Scholar
  25. 25.
    Ajayan PM, Marks LD (1988) Quasimelting and phases of small particles. Phys Rev Lett 60(7):585–587. doi: 10.1103/PhysRevLett.60.585 CrossRefGoogle Scholar
  26. 26.
    de Mongeot EB, Cupolillo A, Valbusa U, Rocca M (1997) O2 dissociation on Ag(001): the role of kink sites. Chem Phys Lett 270(3–4):345–350CrossRefGoogle Scholar
  27. 27.
    Wiley BJ, Sun Y, Xia Y (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21(18):8077–8080CrossRefGoogle Scholar
  28. 28.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi: 10.1126/science.1077229 CrossRefGoogle Scholar
  29. 29.
    Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44(14):2154–2157. doi: 10.1002/anie.200462208 CrossRefGoogle Scholar
  30. 30.
    Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3(7):955–960. doi: 10.1021/nl034312m CrossRefGoogle Scholar
  31. 31.
    Wiley BJ, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4(9):1733–1739. doi: 10.1021/nl048912c CrossRefGoogle Scholar
  32. 32.
    Kim MH, Lu X, Wiley BJ, Lee EP, Xia Y (2008) Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4. J Phys Chem C 112(21):7872–7876. doi: 10.1021/jp711662f CrossRefGoogle Scholar
  33. 33.
    Wiley BJ, Xiong Y, Li ZY, Yin Y, Xia Y (2006) Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Lett 6(4):765–768CrossRefGoogle Scholar
  34. 34.
    Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chlorauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901. doi: 10.1021/ja039734c CrossRefGoogle Scholar
  35. 35.
    Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15(7):1197–1208. doi: 10.1002/adfm.200400091 CrossRefGoogle Scholar
  36. 36.
    Xiong Y, Washio I, Chen J, Cai H, Li Z-Y, Xia Y (2006) Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of metal nanoplates in aqueous solutions. Langmuir 22(20):8563–8570. doi: 10.1021/la061323x CrossRefGoogle Scholar
  37. 37.
    Xiong Y, Siekkinen AR, Wang J, Yin Y, Kim MJ, Xia Y (2007) Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J Mater Chem 17:2600–2602. doi: 10.1039/b705253g CrossRefGoogle Scholar
  38. 38.
    Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3(5):675–679. doi: 10.1021/nl034140t CrossRefGoogle Scholar
  39. 39.
    McLellan JM, Siekkinen A, Chen J, Xia Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 417(1–3):122–126. doi: 10.1016/j.cplett.2006.05.111 CrossRefGoogle Scholar
  40. 40.
    McLellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7(4):1013–1017. doi: 10.1021/nl070157q CrossRefGoogle Scholar
  41. 41.
    Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038. doi: 10.1021/nl0515753 CrossRefGoogle Scholar
  42. 42.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface Plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105(12):2343–2350. doi: 10.1021/jp002906x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Claire M. Cobley
    • 1
  • Sara E. Skrabalak
    • 2
  • Dean J. Campbell
    • 3
  • Younan Xia
    • 1
  1. 1.Department of Biomedical EngineeringWashington UniversitySt. LouisUSA
  2. 2.Department of ChemistryIndiana University-BloomingtonBloomingtonUSA
  3. 3.Department of Chemistry and BiochemistryBradley UniversityPeoriaUSA

Personalised recommendations