Advertisement

Plasmonics

, Volume 4, Issue 2, pp 95–105 | Cite as

Preparation of Nanostructured Film Arrays for Transmission Localized Surface Plasmon Sensing

  • Young-Seok Shon
  • Hyung Y. Choi
  • Michael S. Guerrero
  • Chuhee Kwon
Article

Abstract

This article presents a concise review of preparation methods for transparent nanostructured films, with an emphasis on their current applications in transmission-localized surface plasmon resonance (T-LSPR) sensing. One of the first methods used for the fabrication of transparent nanostructured metal films is a direct vacuum evaporation of thin gold films. Self-induced formations of small gold islands result in transparent nanostructured gold arrays. The most well-established method is a nanosphere lithography developed by Van Duyne. Nanotriangular island arrays with controlled size and optical properties can be fabricated by this protocol. A different nanolithography method known as focused ion beam milling is reported and used for the fabrication of nanohole arrays. Simple assembly of solution-phase synthesized nanoparticles has also been utilized for the preparation of nanoparticle arrays capable of T-LSPR sensing. Lastly, this article also describes a new preparation strategy, in which self-assembly/thermolysis of nanoparticle multilayers is employed to obtain transparent nanoisland architectures on glass substrates.

Keywords

Nanostructures Metal films Transmission SPR Nanoparticles Nanoislands 

Notes

Acknowledgment

This research was supported by California State University, Long Beach.

References

  1. 1.
    Pletneva EV, Laederach AT, Fulton DB, Kostic NM (2001) The role of cation- interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. J Am Chem Soc 123:6232–6245CrossRefGoogle Scholar
  2. 2.
    Nabeshima T, Yoshihira Y, Saiki T, Akine S, Horn E (2003) Remarkably large positive and negative allosteric effects on ion recognition by the formation of a novel helical pseudocryptand. J Am Chem Soc 125:28–29CrossRefGoogle Scholar
  3. 3.
    Stevens MM, Allen S, Davies MC, Roberts CJ, Sakata JK, Tendler SJB, Tirrell DA, Williams PM (2005) Molecular level investigations of the inter- and intramolecular interactions of pH-responsive artificial triblock proteins. Biomacromolecules 6:1266–1271CrossRefGoogle Scholar
  4. 4.
    Ford RC, Ruffle SV, Ramirez-Cuesta AJ, Michalarias I, Beta I, Miller A, Li J (2004) Inelastic incoherent neutron scattering measurements of intact cells and tissues and detection of interfacial water. J Am Chem Soc 126:4682–4688CrossRefGoogle Scholar
  5. 5.
    Joshi H, Shirude PS, Bansal V, Ganesh KN, Sastry M (2004) Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J Phys Chem B 108:11535–11540CrossRefGoogle Scholar
  6. 6.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422CrossRefGoogle Scholar
  7. 7.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461CrossRefGoogle Scholar
  8. 8.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  9. 9.
    Homolar J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493CrossRefGoogle Scholar
  10. 10.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  11. 11.
    Smith EA, Corn RM (2003) Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Applied Spectroscopy 57:320A–332ACrossRefGoogle Scholar
  12. 12.
    Seferyan HY, Zadoyan R, Wark AW, Corn RM, Apkarian VA (2007) Diagnostics of spectrally resolved transient absorption: surface plasmon resonance of metal nanoparticles. J Phys Chem C 111:18525–18532CrossRefGoogle Scholar
  13. 13.
    Jiang G, Baba A, Ikarashi H, Xu R, Locklin J, Kashif KR, Shinbo K, Kato K, Kaneko F, Advincula R (2007) Signal enhancement and tuning of surface plasmon resonance in nanoparticle/polyelectrolyte ultrathin films. J Phys Chem C 111:18687–18694CrossRefGoogle Scholar
  14. 14.
    Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP (2005) Towards advanced chemical and biological nanosensors – an overview. Talanta 67:438–448CrossRefGoogle Scholar
  15. 15.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952CrossRefGoogle Scholar
  16. 16.
    Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065CrossRefGoogle Scholar
  17. 17.
    Kalyuzhny G, Vaskevich A, Ashkenasy G, Shanzer A, Rubinstein I (2000) UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films. J Phys Chem B 104:8238–8244CrossRefGoogle Scholar
  18. 18.
    Kalyuzhny G, Schneeweiss MA, Shanzer A, Vaskevich A, Rubinstein I (2001) Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films. J Am Chem Soc 123:3177–3178CrossRefGoogle Scholar
  19. 19.
    Kalyuzhny G, Vaskevich A, Schneeweiss MA, Rubinstein I (2002) Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films. Chem Eur J 8:3850–3857CrossRefGoogle Scholar
  20. 20.
    Lahav M, Vaskevich A, Rubinstein I (2004) Biological sensing using transmission surface plasmon resonance spectroscopy. Langmuir 20:7365–7367CrossRefGoogle Scholar
  21. 21.
    Dimilla PA, Folkers JP, Biebuyck RH, Lopez GP, Whitesides GM (1994) Wetting and protein adsorption on self-assembled monolayers of alkanethiolates supported on transparent films of gold. J Am Chem Soc 116:2225–2226CrossRefGoogle Scholar
  22. 22.
    Uosaki K, Kondo T, Zhang X-Q, Yanagida M (1997) Very efficient visible-light-induced uphill electron transfer at a self-assembled monolayer with a porphyrin-ferrocene-thiol linked molecule. J Am Chem Soc 119:8367–8368CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Verma AL, Nakashima K, Yoneyama M, Iriyama K, Ozaki Y (1997) Substrate-dependent aggregation and energy transfer in Langmuir-Blodgett films of 5-(4-N-octadecylpyridyl)-10,15,20-tri-p-tolylporphyrin studied by ultraviolet-visible and fluorescence spectroscopies. Langmuir 13:5726–5731CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Nakashima K, Verma AL, Yoneyama M, Iriyama K, Ozaki Y (1998) Molecular orientation and aggregation in mixed Langmuir-Blodget of 5-(4-N-octadecylpyridyl)-10,15,20-tri-p-tolylporphyrin and stearic acid studied by ultraviolet-visible, fluorescence, and infrared spectroscopies. Langmuir 14:1177–1182CrossRefGoogle Scholar
  25. 25.
    Hutter E, Pileni M-P (2003) Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B 107:6497–6499CrossRefGoogle Scholar
  26. 26.
    Doron-Mor I, Barkay Z, Filip-Granit N, Vaskevich A, Rubinstein I (2004) Ultrathin gold island films on silanized glass morphology and optical properties. Chem Mater 16:3476–3483CrossRefGoogle Scholar
  27. 27.
    Doron-Mor I, Cohen H, Barkay Z, Shanzer A, Vaskevich A, Rubinstein I (2005) Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: self-assembled multilayers on evaporated gold island films. Chem Eur J 11:5555–5562CrossRefGoogle Scholar
  28. 28.
    Ruach-Nir I, Bendikov TA, Doron-Mor I, Barkay Z, Vaskevich A, Rubinstein I (2007) Silica-stabilized gold island films for transmission localized surface plasmon sensing. J Am Chem Soc 129:84–92CrossRefGoogle Scholar
  29. 29.
    Tokareva I, Minko S, Fendler JH, Hutter E (2004) Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Am Chem Soc 126:15950–15951CrossRefGoogle Scholar
  30. 30.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  31. 31.
    Hulteen JC, Treichel DA, Smith MT, Duval ML, Jensen TR, Van Duyne RP (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103:3854–3863CrossRefGoogle Scholar
  32. 32.
    Jensen TR, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. J Phys Chem B 103:2394–2401CrossRefGoogle Scholar
  33. 33.
    Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103:9846CrossRefGoogle Scholar
  34. 34.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  35. 35.
    Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plsamon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556CrossRefGoogle Scholar
  36. 36.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon spectrum of silver nanoparticles. J Phys Chem B 105:2343–2350CrossRefGoogle Scholar
  37. 37.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482CrossRefGoogle Scholar
  38. 38.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109–116CrossRefGoogle Scholar
  39. 39.
    Whitney AV, Elam JW, Zou S, Zinovev AV, Stair PC, Schatz GC, Van Duyne RP (2005) Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B 109:20522–20528CrossRefGoogle Scholar
  40. 40.
    Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:6961–6968CrossRefGoogle Scholar
  41. 41.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRefGoogle Scholar
  42. 42.
    Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107:1772–1780CrossRefGoogle Scholar
  43. 43.
    Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of Concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126:12669–12676CrossRefGoogle Scholar
  44. 44.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzhemimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271CrossRefGoogle Scholar
  45. 45.
    Zhao J, Das A, Zhang X, Schatz GC, Sligar SG, Van Duyne RP (2006) Resonance surface plasmon spectroscopy: low molecular weight substrate binding to Cytochrome P450. J Am Chem Soc 128:11004–11005CrossRefGoogle Scholar
  46. 46.
    Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Van Duyne RP (2007) Interaction of plasmon and molecular resonances for Rhodamine 6G adsorbed on silver nanoparticles. J Am Chem Soc 129:7647–7656CrossRefGoogle Scholar
  47. 47.
    Dahlin A, Zäch M, Rindzevicius T, Käll M, Sutherland DS, Höök F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043–5048CrossRefGoogle Scholar
  48. 48.
    Zhao J, Zhang XY, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1:219–228CrossRefGoogle Scholar
  49. 49.
    Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815CrossRefGoogle Scholar
  50. 50.
    Brolo AG, Kwok SC, Cooper MD, Moffitt MG, Wang C-W, Gordon R, Riordon J, Kavanagh KL (2006) Surface plasmon-quantum dot coupling from arrays of nanoholes. J Phys Chem B 110:8307–8313CrossRefGoogle Scholar
  51. 51.
    Leebeeck AD, Kumar LKS, de Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100CrossRefGoogle Scholar
  52. 52.
    Sharpe JC, Mitchell JS, Lin L, Sedoglavich N, Blaikie R (2008) Gold nanohole array substrates as immunobiosensors. Anal Chem 80:2244–2249CrossRefGoogle Scholar
  53. 53.
    Williams SM, Stafford AD, Rodriguez KR, Rogers TM, Coe JV (2003) Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers. J Phys Chem B 107:11871–11879CrossRefGoogle Scholar
  54. 54.
    Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632CrossRefGoogle Scholar
  55. 55.
    Grabar KC, Brown KR, Keating CD, Stranick SJ, Tang S-L, Natan M-J (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69:471–477CrossRefGoogle Scholar
  56. 56.
    Okamoto T, Yamaguchi I, Kobayashi T (2000) Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett 25:372–374CrossRefGoogle Scholar
  57. 57.
    Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509CrossRefGoogle Scholar
  58. 58.
    Frederix F, Friedt J-M, Choi K-H, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900CrossRefGoogle Scholar
  59. 59.
    Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378CrossRefGoogle Scholar
  60. 60.
    Lin H-Y, Chen C-T, Chen Y-C (2006) Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized glass substrates. Anal Chem 78:6873–6878CrossRefGoogle Scholar
  61. 61.
    Tam F, Moran C, Halas N (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108:17290–17294CrossRefGoogle Scholar
  62. 62.
    Marinakos SM, Chen S, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 79:5278–5283CrossRefGoogle Scholar
  63. 63.
    Mitsuishi M, Koishikawa Y, Tanaka H, Sato E, Mikayama T, Matsui J, Miyashita T (2007) Nanoscale actuation of thermoreversible polymer brushes coupled with localized surface plasmon resonance of gold nanoparticles. Langmuir 23:7472–7474CrossRefGoogle Scholar
  64. 64.
    Konry T, Novoa A, Shemer-Avni Y, Hanuka N, Cosnier S, Lepellec A, Marks RS (2005) Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal Chem 77:1771–1779CrossRefGoogle Scholar
  65. 65.
    Konry T, Novoa A, Cosnier S, Marks RS (2003) Development of an "electroptode" immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit. Anal Chem 75:2633–2639CrossRefGoogle Scholar
  66. 66.
    Isaacs SR, Choo H, Ko W-B, Shon Y-S (2006) Chemical, thermal, and ultrasonic stability of hybrid nanoparticles and nanoparticle multilayer films. Chem Mater 18:107–114CrossRefGoogle Scholar
  67. 67.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Young-Seok Shon
    • 1
  • Hyung Y. Choi
    • 1
  • Michael S. Guerrero
    • 2
  • Chuhee Kwon
    • 2
  1. 1.Department of Chemistry and BiochemistryCalifornia State UniversityLong BeachUSA
  2. 2.Department of PhysicsCalifornia State UniversityLong BeachUSA

Personalised recommendations