Plasmonics

, Volume 4, Issue 2, pp 79–93

Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging

  • Ken-Tye Yong
  • Mark T. Swihart
  • Hong Ding
  • Paras N. Prasad
Article

Abstract

In this review, we highlight our recent achievements in using colloidal gold nanoparticles as building blocks for fabrication of anisotropic and multicomponent nanoparticles (e.g., nanoshells, semiconductor nanocrystals, and gold nanorods). The tunable optical properties of these nanoparticles are well suited for various biomedical and biophotonic applications.

Keywords

Gold nanopaticle Semiconductor nanocrystal Nanorod Bioimaging Nanoshell Seeded growth Anisotropic nanocrystal 

References

  1. 1.
    Prasad PN (2004) Nanophotonics. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Yin Y, Alivisatos AP (2005) Nature 437:664–670 doi:10.1038/nature04165 CrossRefGoogle Scholar
  3. 3.
    Alivisatos P (2004) Nat Biotechnol 22:47–52 doi:10.1038/nbt927 CrossRefGoogle Scholar
  4. 4.
    Prasad PN (2004) Biophotonics. Wiley, New YorkGoogle Scholar
  5. 5.
    Kim S, Bawendi MG (2003) J Am Chem Soc 125:14652–14653 doi:10.1021/ja0368094 CrossRefGoogle Scholar
  6. 6.
    Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) J Am Chem Soc 128:2526–2527 doi:10.1021/ja0579816 CrossRefGoogle Scholar
  7. 7.
    Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX et al (2006) Nano Lett 6:669–676 doi:10.1021/nl052405t CrossRefGoogle Scholar
  8. 8.
    Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci U S A 99:12617–12621 doi:10.1073/pnas.152463399 CrossRefGoogle Scholar
  9. 9.
    Bruchez M Jr., Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016 doi:10.1126/science.281.5385.2013 CrossRefGoogle Scholar
  10. 10.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–1762 doi:10.1126/science.1077194 CrossRefGoogle Scholar
  11. 11.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Science 307:538–544 doi:10.1126/science.1104274 CrossRefGoogle Scholar
  12. 12.
    Chan WC, Nie S (1998) Science 281:2016–2018 doi:10.1126/science.281.5385.2016 CrossRefGoogle Scholar
  13. 13.
    Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW et al (2003) Science 300:1434–1436 doi:10.1126/science.1083780 CrossRefGoogle Scholar
  14. 14.
    Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) Nat Biotechnol 22:969–976 doi:10.1038/nbt994 CrossRefGoogle Scholar
  15. 15.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Nat Biotechnol 22:93–97 doi:10.1038/nbt920 CrossRefGoogle Scholar
  16. 16.
    Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B et al (2007) Nat Biotechnol 25:1165–1170 doi:10.1038/nbt1340 CrossRefGoogle Scholar
  17. 17.
    Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) J Am Chem Soc 127:1364–11371 doi:10.1021/ja051455x CrossRefGoogle Scholar
  18. 18.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Nano Lett 5:09–711 doi:10.1021/nl050127s CrossRefGoogle Scholar
  19. 19.
    Levin CS, Bishnoi SW, Grady NK, Halas NJ (2006) Anal Chem 78:277–3281 doi:10.1021/ac060041z Google Scholar
  20. 20.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Nano Lett 7:929–1934 doi:10.1021/nl070610y CrossRefGoogle Scholar
  21. 21.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:115–2120 doi:10.1021/ja057254a Google Scholar
  22. 22.
    El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:29–834 doi:10.1021/nl050074e CrossRefGoogle Scholar
  23. 23.
    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A et al (2000) Nature 404:59–61 doi:10.1038/35003535 CrossRefGoogle Scholar
  24. 24.
    Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Nat Mater 2:82–385 doi:10.1038/nmat902 CrossRefGoogle Scholar
  25. 25.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:025–1102 doi:10.1021/cr030063a CrossRefGoogle Scholar
  26. 26.
    Yong KT, Sahoo Y, Zeng H, Swihart MT, Minter JR, Prasad PN (2007) Chem Mater 19:108–4110 doi:10.1021/cm0709774 CrossRefGoogle Scholar
  27. 27.
    Mokari T, Banin U (2003) Chem Mater 15:955–3960 doi:10.1021/cm034173± CrossRefGoogle Scholar
  28. 28.
    Panda AB, Glaspell G, El-Shall MS (2006) J Am Chem Soc 128:790–2791 doi:10.1021/ja058148b CrossRefGoogle Scholar
  29. 29.
    Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM et al (2007) Nano Lett 7:61–765 doi:10.1021/nl063031m CrossRefGoogle Scholar
  30. 30.
    Yong K-T, Roy I, Pudavar HE, Bergey EJ, Tramposch KM, Swihart MT et al (2008) Adv Mater 20:1412–1417CrossRefGoogle Scholar
  31. 31.
    Fu A, Gu W, Boussert B, Koski K, Gerion D, Manna L et al (2007) Nano Lett 7:79–182 doi:10.1021/nl0626434 CrossRefGoogle Scholar
  32. 32.
    Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R et al (2005) J Am Chem Soc 127:2484–12485 doi:10.1021/ja053761g Google Scholar
  33. 33.
    Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung CH et al (2007) Anal Chem 79:291–3297 doi:10.1021/ac061808q CrossRefGoogle Scholar
  34. 34.
    Shi Kam W, O'Connell M, Wisdom JA, Dai H (2005) Proc Natl Acad Sci U S A 102:1600–11605 doi:10.1073/pnas.0502680102 CrossRefGoogle Scholar
  35. 35.
    Ghosh SK, Pal T (2007) Chem Rev 107:4797–4862 doi:10.1021/cr0680282 CrossRefGoogle Scholar
  36. 36.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346 doi:10.1021/cr030698 CrossRefGoogle Scholar
  37. 37.
    Murphy CJ (2002) Science 298:2139–2141 doi:10.1126/science.1080007 CrossRefGoogle Scholar
  38. 38.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677 doi:10.1021/jp026731y CrossRefGoogle Scholar
  39. 39.
    Yang Y, Shi J, Kawamura G, Nogami M (2008) Scr Mater 58:862–865 doi:10.1016/j.scriptamat.2008.01.017 CrossRefGoogle Scholar
  40. 40.
    Lytton-Jean AKR, Mirkin CA (2005) J Am Chem Soc 127:12754–12755 doi:10.1021/ja052255o CrossRefGoogle Scholar
  41. 41.
    Demers LM, Ostblom M, Zhang H, Jang NH, Liedberg B, Mirkin CA (2002) J Am Chem Soc 124:11248–11249 doi:10.1021/ja0265355 CrossRefGoogle Scholar
  42. 42.
    Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Nano Lett 7:3818–3821 doi:10.1021/nl072471q CrossRefGoogle Scholar
  43. 43.
    Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL (2002) Langmuir 18:6666–6670 doi:10.1021/la0202428 CrossRefGoogle Scholar
  44. 44.
    Nie S, Emory SR (1997) Science 275:1102–1106 doi:10.1126/science.275.5303.1102 CrossRefGoogle Scholar
  45. 45.
    Liu Y, Male KB, Bouvrette P, Luong JHT (2003) Chem Mater 15:4172–4180 doi:10.1021/cm0342041 CrossRefGoogle Scholar
  46. 46.
    Chen D-H, Chen C-J (2002) J Mater Chem 12:1557–1562 doi:10.1039/b110749f CrossRefGoogle Scholar
  47. 47.
    Velikov KP, Zegers GE, van Blaaderen A (2003) Langmuir 19:1384–1389 doi:10.1021/la026610p CrossRefGoogle Scholar
  48. 48.
    Pastoriza-Santos I, Liz-Marzan LM (2002) Langmuir 18:2888–2894 doi:10.1021/la015578g CrossRefGoogle Scholar
  49. 49.
    Zhao X, Mai Z, Kang X, Dai Z, Zou X (2008) Electrochim Acta 53:4732–4739 doi:10.1016/j.electacta.2008.02.007 CrossRefGoogle Scholar
  50. 50.
    Ma Z, Han H (2008) Colloids Surf A Physicochem Eng Asp 317:229–233 doi:10.1016/j.colsurfa.2007.10.018 CrossRefGoogle Scholar
  51. 51.
    Wang W, Chen X, Efrima S (1999) J Phys Chem B 103:7238–7246 doi:10.1021/jp991101q CrossRefGoogle Scholar
  52. 52.
    Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y (2001) Langmuir 17:3795–3799 doi:10.1021/la001361v CrossRefGoogle Scholar
  53. 53.
    Neiman B, Grushka E, Lev O (2001) Anal Chem 73:5220–5227 doi:10.1021/ac0104375 CrossRefGoogle Scholar
  54. 54.
    Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Langmuir 16:6396–6399 doi:10.1021/la991507u CrossRefGoogle Scholar
  55. 55.
    Pastoriza-Santos I, Liz-Marzan LM (1999) Langmuir 15:948–951 doi:10.1021/la980984u CrossRefGoogle Scholar
  56. 56.
    Tan Y, Jiang L, Li Y, Zhu DJ (2002) Phys Chem B 106:3131–3138 doi:10.1021/jp012668l CrossRefGoogle Scholar
  57. 57.
    Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Chem Mater 13:1674–1681 doi:10.1021/cm000416b CrossRefGoogle Scholar
  58. 58.
    Hall SR, Davis SA, Mann S (2000) Langmuir 16:1454–1456 doi:10.1021/la9909143 CrossRefGoogle Scholar
  59. 59.
    Pham T, Jackson JB, Halas NJ, Lee TR (2002) Langmuir 18:4915–4920 doi:10.1021/la015561y CrossRefGoogle Scholar
  60. 60.
    Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957–1962 doi:10.1021/cm020732l CrossRefGoogle Scholar
  61. 61.
    Nikoobakht B, El-Sayed MA (2001) Langmuir 17:6368–6374 doi:10.1021/la010530o CrossRefGoogle Scholar
  62. 62.
    Leff DV, Brandt L, Heath JR (1996) Langmuir 12:4723–4730 doi:10.1021/la960445u CrossRefGoogle Scholar
  63. 63.
    Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Nano Lett 4:2355–2359 doi:10.1021/nl048610a CrossRefGoogle Scholar
  64. 64.
    Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D et al (2007) Nano Lett 7:3759–3765 doi:10.1021/nl072209h CrossRefGoogle Scholar
  65. 65.
    Yong K-T, Sahoo Y, Swihart MT, Prasad PN (2006) Colloids Surf A Physicochem Eng Asp 290:89–105 doi:10.1016/j.colsurfa.2006.05.004 CrossRefGoogle Scholar
  66. 66.
    Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Langmuir 21:1610–1617 doi:10.1021/la047628y CrossRefGoogle Scholar
  67. 67.
    Gerion D, Chen F, Kannan B, Fu A, Parak WJ, Chen DJ et al (2003) Anal Chem 75:4766–4772 doi:10.1021/ac034482j CrossRefGoogle Scholar
  68. 68.
    Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL et al (2003) Nano Lett 3:1677–1681 doi:10.1021/nl034815s CrossRefGoogle Scholar
  69. 69.
    Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004) J Phys Chem B 108:18826–18831 doi:10.1021/jp046481g CrossRefGoogle Scholar
  70. 70.
    Murray CB, Kagan CR, Bawendi MG (1995) Science 270:1335–1338 doi:10.1126/science.270.5240.1335 CrossRefGoogle Scholar
  71. 71.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S et al (2001) J Phys Chem B 105:8861–8871 doi:10.1021/jp0105488 CrossRefGoogle Scholar
  72. 72.
    Fu A, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) J Am Chem Soc 126:10832–10833 doi:10.1021/ja046747x CrossRefGoogle Scholar
  73. 73.
    Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH et al (2007) J Phys Chem B 111:6969–6972 doi:10.1021/jp070620n CrossRefGoogle Scholar
  74. 74.
    Jiang XC, Xiong QH, Nam S, Qian F, Li Y, Lieber CM (2007) Nano Lett 7:3214–3218 doi:10.1021/nl072024a CrossRefGoogle Scholar
  75. 75.
    Javey A, Nam S, Friedman RS, Yan H, Lieber CM (2007) Nano Lett 7:773–777 doi:10.1021/nl063056l CrossRefGoogle Scholar
  76. 76.
    Barrelet CJ, Bao JM, Loncar M, Park HG, Capasso F, Lieber CM (2006) Nano Lett 6:11–15 doi:10.1021/nl0522983 CrossRefGoogle Scholar
  77. 77.
    Agarwal R, Barrelet CJ, Lieber CM (2005) Nano Lett 5:917–920 doi:10.1021/nl050440u CrossRefGoogle Scholar
  78. 78.
    Qian F, Li Y, Gradecak S, Wang DL, Barrelet CJ, Lieber CM (2004) Nano Lett 4:1975–1979 doi:10.1021/nl0487774 CrossRefGoogle Scholar
  79. 79.
    Liu J, Fei P, Zhou J, Tummala R, Wang ZL (2008) Appl Phys Lett 92:173105CrossRefGoogle Scholar
  80. 80.
    Qin Y, Wang XD, Wang ZL (2008) Nature 451:809–U5 doi:10.1038/nature06601 CrossRefGoogle Scholar
  81. 81.
    Lin YF, Song J, Ding Y, Lu SY, Wang ZL (2008) Appl Phys Lett 92:022105CrossRefGoogle Scholar
  82. 82.
    Wang XD, Liu J, Song JH, Wang ZL (2007) Nano Lett 7:2475–2479 doi:10.1021/nl0712567 CrossRefGoogle Scholar
  83. 83.
    Zou BS, Liu RB, Wang FF, Pan AL, Cao L, Wang ZL (2006) J Phys Chem B 110:12865–12873 doi:10.1021/jp061357d CrossRefGoogle Scholar
  84. 84.
    Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) J Am Chem Soc 129:7228–7229 doi:10.1021/ja071456k CrossRefGoogle Scholar
  85. 85.
    Morales AM, Lieber CM (1998) Science 279:208–211 doi:10.1126/science.279.5348.208 CrossRefGoogle Scholar
  86. 86.
    Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE (1995) Science 270:1791–1794 doi:10.1126/science.270.5243.1791 CrossRefGoogle Scholar
  87. 87.
    Peng ZA, Peng X (2001) J Am Chem Soc 123:183–184 doi:10.1021/ja003633m CrossRefGoogle Scholar
  88. 88.
    Xie R, Battaglia D, Peng X (2007) J Am Chem Soc 129:15432–15433 doi:10.1021/ja076363h CrossRefGoogle Scholar
  89. 89.
    Peng ZA, Peng X (2002) J Am Chem Soc 124:3343–3353 doi:10.1021/ja0173167 CrossRefGoogle Scholar
  90. 90.
    Peng ZA, Peng X (2001) J Am Chem Soc 123:1389–1395 doi:10.1021/ja0027766 CrossRefGoogle Scholar
  91. 91.
    Stach EA, Pauzauskie PJ, Kuykendall T, Goldberger J, He R, Yang P (2003) Nano Lett 3:867–869 doi:10.1021/nl034222h CrossRefGoogle Scholar
  92. 92.
    Ding Y, Gao PX, Wang ZL (2004) J Am Chem Soc 126:2066–2072 doi:10.1021/ja039354r CrossRefGoogle Scholar
  93. 93.
    Bakkers EPAM, Verheijen MA (2003) J Am Chem Soc 125:3440–3441 doi:10.1021/ja0299102 CrossRefGoogle Scholar
  94. 94.
    Kuno M, Ahmad O, Protasenko V, Bacinello D, Kosel TH (2006) Chem Mater 18:5722–5732 doi:10.1021/cm061559m CrossRefGoogle Scholar
  95. 95.
    Hull KL, Grebinski JW, Kosel TH, Kuno M (2005) Chem Mater 17:4416–4425 doi:10.1021/cm050952± CrossRefGoogle Scholar
  96. 96.
    Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Chem Mater 8:173–180 doi:10.1021/cm9503137 CrossRefGoogle Scholar
  97. 97.
    Protasenko V, Bacinello D, Kuno M (2006) J Phys Chem B 110:25322–25331 doi:10.1021/jp066034w CrossRefGoogle Scholar
  98. 98.
    Robel I, Bunker BA, Kamat PV, Kuno M (2006) Nano Lett 6:1344–1349 doi:10.1021/nl060199z CrossRefGoogle Scholar
  99. 99.
    Ma C, Wang ZL (2005) Adv Mater 17:2635–2639 doi:10.1002/adma.200500805 CrossRefGoogle Scholar
  100. 100.
    Xi LF, Lam YM, Xu YP, Li LJ (2008) J Colloid Interface Sci 320:491–500 doi:10.1016/j.jcis.2008.01.048 CrossRefGoogle Scholar
  101. 101.
    Panda AB, Glaspell G, El-Shall MS (2008) J Am Chem Soc 130:4203–4203 doi:10.1021/ja8003717 CrossRefGoogle Scholar
  102. 102.
    Puthussery J, Lan A, Kosel TH, Kuno M (2008) ACS Nano 2:357–367 doi:10.1021/nn700270a CrossRefGoogle Scholar
  103. 103.
    Lu X, Hanrath T, Johnston KP, Korgel BA (2003) Nano Lett 3:93–99 doi:10.1021/nl0202307 CrossRefGoogle Scholar
  104. 104.
    Hanrath T, Korgel BA (2002) J Am Chem Soc 124:1424–1429 doi:10.1021/ja016788i CrossRefGoogle Scholar
  105. 105.
    Schricker AD, Joshi SV, Hanrath T, Banerjee SK, Korgel BA (2006) J Phys Chem B 110:6816–6823 doi:10.1021/jp055663n CrossRefGoogle Scholar
  106. 106.
    Yu H, Li J, Loomis RA, Gibbons PC, Wang LW, Buhro WE (2003) J Am Chem Soc 125:16168–16169 doi:10.1021/ja037971 CrossRefGoogle Scholar
  107. 107.
    Yong K-T, Sahoo Y, Swihart MT, Prasad PN (2006) Adv Mater 18:1978–1982 doi:10.1002/adma.200600368 CrossRefGoogle Scholar
  108. 108.
    Acharya S, Patla I, Kost J, Efrima S Golan Y (2006) J Am Chem Soc 128:9294–9295 doi:10.1021/ja062404i CrossRefGoogle Scholar
  109. 109.
    Dong L, Gushtyuk T, Jiao J (2004) J Phys Chem B 108:1617–1620 doi:10.1021/jp0364811 CrossRefGoogle Scholar
  110. 110.
    Sun SQ, Li T (2007) Cryst Growth Des 7:2367–2371 doi:10.1021/cg060529t CrossRefGoogle Scholar
  111. 111.
    Zhang P, Gao L (2003) Langmuir 19:208–210 doi:10.1021/la0206458 CrossRefGoogle Scholar
  112. 112.
    Barrelet CJ, Wu Y, Bell DC, Lieber CM (2003) J Am Chem Soc 125:11498–11499 doi:10.1021/ja036990g CrossRefGoogle Scholar
  113. 113.
    Datta A, Panda SK, Chaudhuri S (2007) J Phys Chem C 111:17260–17264 doi:10.1021/jp076093p CrossRefGoogle Scholar
  114. 114.
    Saunders AE, Popov I, Banin U (2006) J Phys Chem B 110:25421–25429 doi:10.1021/jp065594s CrossRefGoogle Scholar
  115. 115.
    Jang JS, Joshi UA, Lee JS (2007) J Phys Chem C 111:13280–13287 doi:10.1021/jp072683b CrossRefGoogle Scholar
  116. 116.
    Yong KT, Sahoo Y, Swihart MT, Prasad PN (2007) J Phys Chem C 111:2447–2458 doi:10.1021/jp066392z CrossRefGoogle Scholar
  117. 117.
    Wang X, Xi G, Liu Y, Qian Y (2008) Cryst Growth Des 8:1406–1411 doi:10.1021/cg070415x CrossRefGoogle Scholar
  118. 118.
    Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) J Am Chem Soc 126:11752–11753 doi:10.1021/ja047659f CrossRefGoogle Scholar
  119. 119.
    Houtepen AJ, Koole R, Vanmaekelbergh D, Meeldijk J, Hickey SG (2006) J Am Chem Soc 128:6792–6793 doi:10.1021/ja061644v CrossRefGoogle Scholar
  120. 120.
    Cao H, Gong Q, Qian X, Wang H, Zai J, Zhu Z (2007) Cryst Growth Des 7:425–429 doi:10.1021/cg060415h CrossRefGoogle Scholar
  121. 121.
    Zhu J, Aruna ST, Koltypin Y, Gedanken A (2000) Chem Mater 12:143–147 doi:10.1021/cm990459w CrossRefGoogle Scholar
  122. 122.
    Lu W, Gao P, Jian WB, Wang ZL, Fang J (2004) J Am Chem Soc 126:14816–14821 doi:10.1021/ja046769j CrossRefGoogle Scholar
  123. 123.
    Choudhury KR, Sahoo Y, Prasad PN (2005) Adv Mater 17:2877–2881 doi:10.1002/adma.200501489 CrossRefGoogle Scholar
  124. 124.
    Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Nano Lett 6:709–714 doi:10.1021/nl052472n CrossRefGoogle Scholar
  125. 125.
    Ni Y, Liu H, Wang F, Liang Y, Hong J, Ma X et al (2004) Cryst Growth Des 4:759–764 doi:10.1021/cg034103f CrossRefGoogle Scholar
  126. 126.
    Ma Y, Qi L, Ma J, Cheng H (2004) Cryst Growth Des 4:351–354 doi:10.1021/cg034174e CrossRefGoogle Scholar
  127. 127.
    Bierman MJ, Lau YKA, Jin S (2007) Nano Lett 7:2907–2912 doi:10.1021/nl071405l CrossRefGoogle Scholar
  128. 128.
    Lee SM, Jun YW, Cho SN, Cheon J (2002) J Am Chem Soc 124:11244–11245 doi:10.1021/ja026805j CrossRefGoogle Scholar
  129. 129.
    Gao F, Lu Q, Liu X, Yan Y, Zhao D (2001) Nano Lett 1:743–748 doi:10.1021/nl0156383 CrossRefGoogle Scholar
  130. 130.
    Chen J, Chen L, Wu LM (2007) Inorg Chem 46:8038–8043 doi:10.1021/ic7008336 CrossRefGoogle Scholar
  131. 131.
    Yong KT, Sahoo Y, Choudhury KR, Swihart MT, Minter JR, Prasad PN (2006) Chem Mater 18:5965–5972 doi:10.1021/cm061771q CrossRefGoogle Scholar
  132. 132.
    Tuan HY, Lee DC, Hanrath T, Korgel BA (2005) Chem Mater 17:5705–5711 doi:10.1021/cm0513031 CrossRefGoogle Scholar
  133. 133.
    Tuan HY, Lee DC, Hanrath T, Korgel BA (2005) Nano Lett 5:681–684 doi:10.1021/nl050099d CrossRefGoogle Scholar
  134. 134.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425–2427 doi:10.1126/science.1069156 CrossRefGoogle Scholar
  135. 135.
    Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Science 310:462–465 doi:10.1126/science.1117908 CrossRefGoogle Scholar
  136. 136.
    Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) J Am Chem Soc 125:13914–13915 doi:10.1021/ja037969i CrossRefGoogle Scholar
  137. 137.
    Stone JW, Sisco PN, Goldsmith EC, Baxter SC, Murphy C (2007) J Nano Lett 7:116–119 doi:10.1021/nl062248d CrossRefGoogle Scholar
  138. 138.
    Wu HY, Huang WL, Huang MH (2007) Cryst Growth Des 7:831–835 doi:10.1021/cg060788i CrossRefGoogle Scholar
  139. 139.
    Moon JM, Wei A (2005) J Phys Chem B 109:23336–23341 doi:10.1021/jp054405n CrossRefGoogle Scholar
  140. 140.
    Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661–6664 doi:10.1021/jp971656q CrossRefGoogle Scholar
  141. 141.
    Tian Y, Liu H, Zhao G, Tatsuma T (2006) J Phys Chem B 110:23478–23481 doi:10.1021/jp065292q CrossRefGoogle Scholar
  142. 142.
    Sau TK, Murphy CJ (2004) J Am Chem Soc 126:8648–8649 doi:10.1021/ja047846d CrossRefGoogle Scholar
  143. 143.
    Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065–4067 doi:10.1021/jp0107964 CrossRefGoogle Scholar
  144. 144.
    Gou L, Murphy C (2005) Chem Mater 17:3668–3672 doi:10.1021/cm050525w CrossRefGoogle Scholar
  145. 145.
    Gao J, Bender CM, Murphy CJ (2003) Langmuir 19:9065–9070 doi:10.1021/la034919i CrossRefGoogle Scholar
  146. 146.
    Wu HY, Chu HC, Kuo TJ, Kuo CL, Huang MH (2005) Chem Mater 17:6447–6451 doi:10.1021/cm051455w CrossRefGoogle Scholar
  147. 147.
    Kim F, Song JH, Yang P (2002) J Am Chem Soc 124:14316–14317 doi:10.1021/ja028110o CrossRefGoogle Scholar
  148. 148.
    Nishioka K, Niidome Y, Yamada S (2007) Langmuir 23:10353–10356 doi:10.1021/la7015534 CrossRefGoogle Scholar
  149. 149.
    Gole A, Murphy CJ (2004) Chem Mater 16:3633–3640 doi:10.1021/cm0492336 CrossRefGoogle Scholar
  150. 150.
    Zijlstra P, Bullen C, Chon JWM, Gu M (2006) J Phys Chem B 110:19315–19318 doi:10.1021/jp0635866 CrossRefGoogle Scholar
  151. 151.
    Chen HM, Peng HC, Liu RS, Asakura K, Lee CL, Lee JF et al (2005) J Phys Chem B 109:19553–19555 doi:10.1021/jp053657l CrossRefGoogle Scholar
  152. 152.
    Yong K-T, Sahoo Y, Swihart M, Schneeberger P, Prasad P (2008) Top Catal 47:49–60 doi:10.1007/s11244-007-9030-7 CrossRefGoogle Scholar
  153. 153.
    Gole A, Murphy CJ (2005) Chem Mater 17:1325–1330 doi:10.1021/cm048297d CrossRefGoogle Scholar
  154. 154.
    Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Bioconjug Chem 18:1490–1497 doi:10.1021/bc070132i CrossRefGoogle Scholar
  155. 155.
    Ding H, Yong KT, Roy I, Pudavar HE, Law WC, Bergey EJ et al (2007) J Phys Chem C 111:12552–12557 doi:10.1021/jp0733419 CrossRefGoogle Scholar
  156. 156.
    Liao H, Hafner JH (2005) Chem Mater 17:4636–4641 doi:10.1021/cm050935k CrossRefGoogle Scholar
  157. 157.
    Yu C, Nakshatri H, Irudayaraj J (2007) Nano Lett 7:2300–2306 doi:10.1021/nl070894m CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ken-Tye Yong
    • 1
  • Mark T. Swihart
    • 1
    • 2
  • Hong Ding
    • 1
  • Paras N. Prasad
    • 1
  1. 1.Institute for Lasers, Photonics and BiophotonicsState University of New York at BuffaloBuffaloUSA
  2. 2.Department of Chemical and Biological EngineeringState University of New York at BuffaloBuffaloUSA

Personalised recommendations