, Volume 4, Issue 1, pp 37–50

Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers

  • Xiaojin Jiao
  • Jeremy Goeckeritz
  • Steve Blair
  • Mark Oldham


The near-field resonances of gold bowtie antennae are numerically modeled. Besides the short-range surface plasmon polariton (SR-SPP) mode along the main axis of the structure, a coupled SPP mode is also found in the gap region (G-SPP). The influence of adhesion layers is considered, which depends on the refractive index and the absorption of the adhesion material and whether it is continuous or etched. A high refractive index causes the peak of the SR-SPP to red-shift. High absorption quenches the intensity of the SR-SPP. The magnitude of influence depends on the overlap of the adhesion layer with the SR-SPP and G-SPP modes. The near-field resonance of the SPP mode on the top surface is also considered. An etched metal adhesion layer changes the near-field localization in the gap and causes the enhancement peaks at different heights within the gap to red-shift from top to bottom. A simple optimization method for the near-field localization by the combination of different top and bottom layers is demonstrated.


Bowtie antennae Surface plasmons Adhesion layers 


  1. 1.
    Ozbay E (2006) Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRefGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  3. 3.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220(1–3):137–141CrossRefGoogle Scholar
  4. 4.
    Atay T, Song JH, Nurmikko AV (2004) Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett 4(9):1627–1631CrossRefGoogle Scholar
  5. 5.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Kall M, Zou SL, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109(3):1079–1087CrossRefGoogle Scholar
  6. 6.
    Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088CrossRefGoogle Scholar
  7. 7.
    Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090CrossRefGoogle Scholar
  8. 8.
    Bakker RM, Boltasseva A, Liu ZT, Pedersen RH, Gresillon S, Kildishev AV, Drachev VP, Shalaev VM (2007) Near-field excitation of nanoantenna resonance. Opt Express 15(21):13682–13688CrossRefGoogle Scholar
  9. 9.
    Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett 4(5):957–961CrossRefGoogle Scholar
  10. 10.
    Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys Rev B 72(16):165409–165415CrossRefGoogle Scholar
  11. 11.
    Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moerner WE (2005) Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys Rev Lett 94(1):17402–17406CrossRefGoogle Scholar
  12. 12.
    Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308(5728):1607–1609CrossRefGoogle Scholar
  13. 13.
    Sondergaard T, Bozhevolnyi S (2007) Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys Rev B 75(7):73402–73406CrossRefGoogle Scholar
  14. 14.
    Sondergaard T, Bozhevolnyi SI (2007) Metal nano-strip optical resonators. Opt Express 15(7):4198–4204CrossRefGoogle Scholar
  15. 15.
    Bozhevolnyi SI, Sondergaard T (2007) General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 15(17):10869–10877CrossRefGoogle Scholar
  16. 16.
    Muskens OL, Giannini V, Sanchez-Gil JA, Rivas JG (2007) Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. Opt Express 15(26):17736–17746CrossRefGoogle Scholar
  17. 17.
    Grober RD, Schoelkopf RJ, Prober DE (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70(11):1354–1356CrossRefGoogle Scholar
  18. 18.
    Farahani JN, Eisler HJ, Pohl DW, Pavius M, Fluckiger P, Gasser P, Hecht B (2007) Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18(12):125506–125510CrossRefGoogle Scholar
  19. 19.
    Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, ‘Kino GS, Moerner WE (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett 6(3):355–360CrossRefGoogle Scholar
  20. 20.
    Yu NF, Cubukcu E, Diehl L, Bour D, Corzine S, Zhu JT, Hofler G, Crozier KB, Capasso, F (2007) Bowtie plasmonic quantum cascade laser antenna. Opt Express 15(20):13272–13281CrossRefGoogle Scholar
  21. 21.
    Chang SW, Adrian Ni C-Y, Chuang S-L (2008) Theory of bowtie plasmonic nanolasers. Opt Express 16(14):10580–10595CrossRefGoogle Scholar
  22. 22.
    Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95(1):17402–17406CrossRefGoogle Scholar
  23. 23.
    Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32(12):1623–1625CrossRefGoogle Scholar
  24. 24.
    Muskens OL, Giannini V, Sanchez-Gil JA, Rivast JG (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7(9):2871–2875CrossRefGoogle Scholar
  25. 25.
    Bakker RM, Yuan HK, Liu ZT, Drachev VP, Kildishev AV, Shalaev VM, Pedersen RH, Gresillon S, Boltasseva A (2008) Enhanced localized fluorescence in plasmonic nanoantennae. Appl Phys Lett 92(4):43101–43104CrossRefGoogle Scholar
  26. 26.
    Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16(12):9144–9154CrossRefGoogle Scholar
  27. 27.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686CrossRefGoogle Scholar
  28. 28.
    Bryant GW, De Abajo FJG, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8(2):631–636CrossRefGoogle Scholar
  29. 29.
    Gerard D, Wenger J, Bonod N, Popov E, Rigneault H, Mahdavi F, Blair S, Dintinger J, Ebbesen TW (2008) Nanoaperture-enhanced fluorescence: towards higher detection rates with plasmonic metals. Phys Rev B 77(4):45413–45421CrossRefGoogle Scholar
  30. 30.
    Barchiesi D, Macias D, Letellier LB, van Labeke D, de la Chapelle ML, Toury T, Kremer E, Moreau L, Grosges T (2008) Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors. Appl Phys B 93:177–181CrossRefGoogle Scholar
  31. 31.
    He G, Zhang LD, Li GH, Liu M, Wang XJ (2008) Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping. J Phys D 41(4):45304–45313CrossRefGoogle Scholar
  32. 32.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  33. 33.
    Lumerical (2008) Lumerical FDTD Solutions online help.
  34. 34.
    Xu T, Jiao X, Zhang GP, Blair S (2007) Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt Express 15(21):13894–13906CrossRefGoogle Scholar
  35. 35.
    Jiao XJ, Wang P, Zhang DG, Tang L, Xie JP, Ming, H (2006) Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure. Opt Express 14(11):4850–4860CrossRefGoogle Scholar
  36. 36.
    Kim J, Cho K, Lee K-S (2008) Effect of adhesion layer on the optical scattering properties of plasmonic Au nanodisc. J Korea Inst Met Mater 46(7):464–470Google Scholar
  37. 37.
    Popov E, Neviere M, Wenger J, Lenne PF, Rigneault H, Chaumet P, Bonod N, Dintinger J, Ebbesen T (2006) Field enhancement in single subwavelength apertures. J Opt Soc Am A 23(9):2342–2348CrossRefGoogle Scholar
  38. 38.
    Woollam JA, Johs B, Herzinger C, Hilfiker J, Synowicki R, Bungay C (1999) Overview of variable angle spectroscopic ellipsometry (VASE). In: Part I: basic theory and typical applications, vol CR72 SPIE proceedings. SPIE, Bellingham, pp 3–28Google Scholar
  39. 39.
    Palik ED (1998) Handbook of optical constants of solids. Elsevier, AmsterdamGoogle Scholar
  40. 40.
    Bendavid A, Martin PJ, Wieczorek L (1999) Morphology and optical properties of gold thin films prepared by filtered arc deposition. Thin Solid Films 354:169–175CrossRefGoogle Scholar
  41. 41.
    Synowiki RA (2008) Suppression of backside reflections from transparent substrates. Phys Status Solidi (c) 5:1085–1088CrossRefGoogle Scholar
  42. 42.
    Al-Kuhaili MF, Durrani SMA (2007) Optical properties of chromium oxide thin films deposited by electron-beam evaporation. Opt Mater 29:709–713CrossRefGoogle Scholar
  43. 43.
    Hones P, Diserens M, Levy F (1999) Characterization of sputter-deposited chromium oxide thin films. Surf Coat Technol 120–121:277–283CrossRefGoogle Scholar
  44. 44.
    Synowiki RA (1998) Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants. Thin Solid Films 313–314:394–397CrossRefGoogle Scholar
  45. 45.
    Wang RX, Beling CD, Fung S, Djurisic AB, Kwong C, Li S (2004) The effect of thermal annealing on the properties of indium tin oxide thin films. In: 2004 conference on optoelectronic and microelectronic materials and devices, pp 57–60, Brisbane, 8–10 December 2004Google Scholar
  46. 46.
    He G, Zhang LD, Li GH, Liu M, Wang XJ (2008) Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping. J Phys D 41:45304–45313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xiaojin Jiao
    • 1
  • Jeremy Goeckeritz
    • 1
  • Steve Blair
    • 1
  • Mark Oldham
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Applied BiosystemsApplera CorporationFoster CityUSA

Personalised recommendations