, Volume 4, Issue 1, pp 9–22 | Cite as

Colloidal Synthesis of Plasmonic Metallic Nanoparticles

  • Qingbo Zhang
  • Yen Nee Tan
  • Jianping Xie
  • Jim Yang LeeEmail author


Solutions of Ag and Au nanoparticles are strongly colored because of localized surface plasmon resonance in the UV/visible spectral region. The optical properties of these nanoparticles may be tuned to suit the needs of the application. This article summarizes our work in recent years on the solution synthesis of nanoparticles with tunable optical properties. The systems of interest include zero-dimensional bimetallic Ag–Au nanoparticles with different structures, one-, two-, and three-dimensional anisotropic monometallic Ag or Au nanoparticles. All of these nanosystems were prepared from colloidal synthesis through simple changes in the synthesis conditions. This is a demonstration of the versatility of colloidal synthesis as a convenient scalable technique for tuning the properties of metallic nanoparticles.


Localized surface plasmon resonance (LSPR) Metallic nanoparticles Colloidal synthesis Gold Silver 



We acknowledge the financial support from the Ministry of Education Academic Research Grant R279-000-204-112. Q. Zhang acknowledges the National University of Singapore for his research scholarship. Y. N. Tan and J. Xie acknowledge the Singapore–MIT Alliance for their research scholarships.


  1. 1.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706CrossRefGoogle Scholar
  2. 2.
    Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7):1599–1603CrossRefGoogle Scholar
  3. 3.
    Englebienne P, Van Hoonacker A, Verhas M (2001) High-throughput screening using the surface plasmon resonance effect of colloidal gold nanoparticles. Analyst 126(10):1645–1651CrossRefGoogle Scholar
  4. 4.
    Schwarzott M, Engelhardt H, Kluhspies T, Baurecht D, Naumann D, Fringeli UP (2003) In situ FTIR ATR spectroscopy of the preparation of an oriented monomolecular film of porin Omp32 on an internal reflecting element by dialysis. Langmuir 19(18):451–7459CrossRefGoogle Scholar
  5. 5.
    Watanabe S, Sonobe M, Arai M, Tazume Y, Matsuo T, Nakamura T, Yoshida K (2002) Enhanced optical sensing of anions with amide-functionalized gold nanoparticles. Chem Commun (23):2866–2867Google Scholar
  6. 6.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250CrossRefGoogle Scholar
  7. 7.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109(22):11279–11285CrossRefGoogle Scholar
  8. 8.
    Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106(37):9463–9483CrossRefGoogle Scholar
  9. 9.
    Calander N (2004) Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Anal Chem 76(8):2168–2173CrossRefGoogle Scholar
  10. 10.
    Ekgasit S, Thammacharoen C, Yu F, Knoll W (2004) Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies. Anal Chem 76(8):2210–2219CrossRefGoogle Scholar
  11. 11.
    Levi SA, Mourran A, Spatz JP, van Veggel F, Reinhoudt DN, Moller M (2002) Fluorescence of dyes adsorbed on highly organized, nanostructured gold surfaces. Chem-Eur J 8(16):3808–3814CrossRefGoogle Scholar
  12. 12.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  13. 13.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics—a route to nanoscale optical devices. Adv Mater 13(19):1501–1505CrossRefGoogle Scholar
  14. 14.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521CrossRefGoogle Scholar
  15. 15.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493CrossRefGoogle Scholar
  16. 16.
    Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28(3):212–242CrossRefGoogle Scholar
  17. 17.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  18. 18.
    Zhao J, Zhang XY, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):219–228CrossRefGoogle Scholar
  19. 19.
    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217CrossRefGoogle Scholar
  20. 20.
    Liang HP, Wan LJ, Bai CL, Jiang L (2005) Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. J Phys Chem B 109(16):7795–7800CrossRefGoogle Scholar
  21. 21.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800CrossRefGoogle Scholar
  22. 22.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111(10):3806–3819CrossRefGoogle Scholar
  23. 23.
    Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE (2004) Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible. Nano Lett 4(5):957–961CrossRefGoogle Scholar
  24. 24.
    Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342CrossRefGoogle Scholar
  25. 25.
    Hicks EM, Zou SL, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Kall M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5(6):1065–1070CrossRefGoogle Scholar
  26. 26.
    Haynes CL, McFarland AD, Smith MT, Hulteen JC, Van Duyne RP (2002) Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing. J Phys Chem B 106(8):1898–1902CrossRefGoogle Scholar
  27. 27.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRefGoogle Scholar
  28. 28.
    Hulteen JC, Vanduyne RP (1995) Nanosphere lithography—a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A-Vac Surf Films 13(3):1553–1558CrossRefGoogle Scholar
  29. 29.
    Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefGoogle Scholar
  30. 30.
    Cao YW, Jin R, Mirkin CA (2001) DNA-modified core–shell Ag/Au nanoparticles. J Am Chem Soc 123(32):7961–7962CrossRefGoogle Scholar
  31. 31.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  32. 32.
    Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem-Int Edit 43(28):3673–3677CrossRefGoogle Scholar
  33. 33.
    Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533CrossRefGoogle Scholar
  34. 34.
    Tang Y, Min OY (2007) Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat Mater 6(10):754–759CrossRefGoogle Scholar
  35. 35.
    Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437(7059):664–670CrossRefGoogle Scholar
  36. 36.
    Zhang QB, Lee JY, Yang J, Boothroyd C, Zhang JX (2007) Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology 18(24):245605CrossRefGoogle Scholar
  37. 37.
    Zhang QB, Xie J, Lee JY, Zhang JX, Boothroyd C (2008) Synthesis of Ag@AgAu metal core–alloy shell bimetallic nanoparticles with tunable shell compositions by the galvanic replacement reaction. Small 4(8):1067–1071CrossRefGoogle Scholar
  38. 38.
    Dick K, Dhanasekaran T, Zhang ZY, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124(10):2312–2317CrossRefGoogle Scholar
  39. 39.
    Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc 125(26):7772–7773CrossRefGoogle Scholar
  40. 40.
    Shibata T, Bunker BA, Zhang ZY, Meisel D, Vardeman CF, Gezelter JD (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124(40):11989–11996CrossRefGoogle Scholar
  41. 41.
    Wonnell SK, Delaye JM, Bibole M, Limoge Y (1992) Activation volume for the interdiffusion of Ag–Au multilayers. J Appl Phys 72(11):5195–5205CrossRefGoogle Scholar
  42. 42.
    Yasuda H, Mori H (1992) Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters. Phys Rev Lett 69(26):3747–3750CrossRefGoogle Scholar
  43. 43.
    Yin YD, Erdonmez C, Aloni S, Alivisatos AP (2006) Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedral. J Am Chem Soc 128(39):12671–12673CrossRefGoogle Scholar
  44. 44.
    Sun YG, Mayers BT, Xia YN (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2(5):481–485CrossRefGoogle Scholar
  45. 45.
    Sun YG, Xia YN (2003) Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett 3(11):1569–1572CrossRefGoogle Scholar
  46. 46.
    Sun YG, Xia YN (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901CrossRefGoogle Scholar
  47. 47.
    Tan YN, Lee JY, Wang DIC (2008) Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solutions. J Phys Chem C 112(14):5463–5470CrossRefGoogle Scholar
  48. 48.
    Xie JP, Zhang QB, Lee JY, Wang DIC (2007) General method for extended metal nanowire synthesis: ethanol induced self-assembly. J Phys Chem C 111(46):17158–17162CrossRefGoogle Scholar
  49. 49.
    Xie JP, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1(5):429–439CrossRefGoogle Scholar
  50. 50.
    Xie JP, Lee JY, Wang DIC, Ting YP (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3(4):672–682CrossRefGoogle Scholar
  51. 51.
    Xie JP, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111(28):10226–10232CrossRefGoogle Scholar
  52. 52.
    Xie JP, Lee JY, Wang DIC (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem Mat 19(11):2823–2830CrossRefGoogle Scholar
  53. 53.
    Hao E, Bailey RC, Schatz GC, Hupp JT, Li SY (2004) Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett 4(2):327–330CrossRefGoogle Scholar
  54. 54.
    Xie JP, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111(45):16858–16865CrossRefGoogle Scholar
  55. 55.
    Smetana AB, Klabunde KJ, Sorensen CM, Ponce AA, Mwale B (2006) Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening. J Phys Chem B 110(5):2155–2158CrossRefGoogle Scholar
  56. 56.
    Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124(10):2305–2311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qingbo Zhang
    • 1
  • Yen Nee Tan
    • 2
  • Jianping Xie
    • 2
  • Jim Yang Lee
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Singapore–MIT AllianceNational University of SingaporeSingaporeSingapore

Personalised recommendations