Plasmonics

, Volume 3, Issue 4, pp 127–150

Plasmonic Optical Properties and Applications of Metal Nanostructures

Article

Abstract

In this review article, we provide an overview of recent research activities in the study of plasmonic optical properties of metal nanostructures with emphasis on understanding the relation between surface plasmon absorption and structure. Both experimental results and theoretical calculations have indicated that the plasmonic absorption strongly depends on the detailed structure of the nanomaterials. Examples discussed include spherical nanoparticles, nanorods, nanowires, hollow nanospheres, aggregates, and nanocages. Plasmon–phonon coupling measured from dynamic studies as a function of particle size, shape, and aggregation state is also reviewed. The fascinating optical properties of metal nanostructures find important applications in a number of technological areas including surface plasmon resonance, surface-enhanced Raman scattering, and photothermal imaging and therapy. Their novel optical properties and emerging applications are illustrated using specific examples from recent literature. The case of hollow nanosphere structures is highlighted to illustrate their unique features and advantages for some of these applications.

Keywords

Metal nanostructures Hollow gold nanospheres Plasmonic absorption SERS Surface-enhanced Raman scattering Aggregates Core–shells SPR Surface plasmon resonance Photothermal imaging and therapy Femtosecond dynamics Hot electron relaxation Coherent oscillations 

References

  1. 1.
    Henglein A (1989) Chem Rev 89:1861 doi:10.1021/cr00098a010 Google Scholar
  2. 2.
    Pileni MP, Taleb A, Petit C (1998) J Dispers Sci Technol 19:185 doi:10.1080/01932699808913171 Google Scholar
  3. 3.
    Emory SR, Nie S (1998) J Phys Chem B 102:493 doi:10.1021/jp9734033 Google Scholar
  4. 4.
    Heilmann A, Kreibig U (2000) Eur Phys J Appl Phys 10:193 doi:10.1051/epjap:2000132 Google Scholar
  5. 5.
    Lazarides AA, Kelly KL, Jensen TR, Schatz GC (2000) J Mol Struct 529:59 doi:10.1016/S0166-1280(00)00532-7 Google Scholar
  6. 6.
    Zhang JZ, Wang ZL, Liu J, Chen S, Liu G-Y (2003) Self-assembled nanostructures. Kluwer Academic/Plenum, New YorkGoogle Scholar
  7. 7.
    Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao DL et al (2002) J Phys Chem B 106:7005 doi:10.1021/jp0204197 Google Scholar
  8. 8.
    Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX, Gou L et al (2005) J Phys Chem B 109:13857 doi:10.1021/jp0516846 Google Scholar
  9. 9.
    Gou LF, Murphy CJ (2005) Chem Mater 17:3668 doi:10.1021/cm050525w Google Scholar
  10. 10.
    Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005) MRS Bull 30:349Google Scholar
  11. 11.
    Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957 doi:10.1021/cm020732l Google Scholar
  12. 12.
    Sun YG, Mayers BT, Xia YN (2002) Nano Lett 2:481 doi:10.1021/nl025531v Google Scholar
  13. 13.
    Sun YG, Mayers B, Xia YN (2003) Nano Lett 3:675 doi:10.1021/nl034140t Google Scholar
  14. 14.
    Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) J Phys Chem B 110:19935 doi:10.1021/jp062136a Google Scholar
  15. 15.
    Schwartzberg AM, Grant CD, van Buuren T, Zhang JZ (2007) J Phys Chem C 111:8892 doi:10.1021/jp067697g Google Scholar
  16. 16.
    Gonzalez AL, Noguez C (2007) J Comput Theor Nanoscience 4:231Google Scholar
  17. 17.
    Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT (2004) J Phys Chem B 108:1224 doi:10.1021/jp036301n Google Scholar
  18. 18.
    Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Nano Lett 6:2630 doi:10.1021/nl061666f Google Scholar
  19. 19.
    Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ, Zhao YP et al (2008) J Phys Chem C 112:895 doi:10.1021/jp075288u Google Scholar
  20. 20.
    Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) J Phys Chem 100:837 doi:10.1021/jp952291h Google Scholar
  21. 21.
    Liao XH, Zhu JJ, Zhao XN, Chen HY (2000) Chem J Chin Universities Chinese 21:1837Google Scholar
  22. 22.
    Lin XQ, Wang SQ (2005) Indian J Chem Sect A Inorganic Bio Inorganic Phys Theor Anal Chem 44:1016Google Scholar
  23. 23.
    Starowicz M, Stypula B, Banas J (2006) Electrochem Commun 8:227 doi:10.1016/j.elecom.2005.11.018 Google Scholar
  24. 24.
    Wadkar MM, Chaudhari VR, Haram SK (2006) J Phys Chem B 110:20889 doi:10.1021/jp063422p Google Scholar
  25. 25.
    Shang L, Chen HJ, Dong SJ (2007) J Phys Chem C 111:10780 doi:10.1021/jp068713c Google Scholar
  26. 26.
    Lin SC, Chen SY, Chen YT, Cheng SY (2008) J Alloy Comp 449:232 doi:10.1016/j.jallcom.2006.01.147 Google Scholar
  27. 27.
    Turkevich J, Stevenson PC, Hiller J (1951) Discuss Faraday Soc 11:55 doi:10.1039/df9511100055 Google Scholar
  28. 28.
    Frens G (1973) Nat Phys Sci (Lond) 241:20Google Scholar
  29. 29.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) J Phys Chem B 110:15700 doi:10.1021/jp061667w Google Scholar
  30. 30.
    Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) J Am Chem Soc 129:13939 doi:10.1021/ja074447k Google Scholar
  31. 31.
    Lee PC, Meisel D (1982) J Phys Chem 86:3391 doi:10.1021/j100214a025 Google Scholar
  32. 32.
    Henglein A (1993) Isr J Chem 33:77Google Scholar
  33. 33.
    Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R et al (2004) J Phys Chem B 108:19191 doi:10.1021/jp048430p Google Scholar
  34. 34.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630 doi:10.1002/anie.200603148 Google Scholar
  35. 35.
    Smetana AB, Wang JS, Boeckl J, Brown GJ, Wai CM (2007) Langmuir 23:10429 doi:10.1021/la701229q Google Scholar
  36. 36.
    Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065 doi:10.1021/jp0107964 Google Scholar
  37. 37.
    Jana NR, Gearheart L, Murphy C (2001) J Chem Commun 2001:617 doi:10.1039/b100521i Google Scholar
  38. 38.
    Brown KR, Walter DG, Natan M (2000) J Chem Mater 12:306 doi:10.1021/cm980065p Google Scholar
  39. 39.
    Brown KR, Lyon LA, Fox AP, Reiss BD, Natan M (2000) J Chem Mater 12:314 doi:10.1021/cm980066h Google Scholar
  40. 40.
    Rodriguez-Fernandez J, Perez-Juste J, de Abajo FJG, Liz-Marzan LM (2006) Langmuir 22:7007 doi:10.1021/la060990n Google Scholar
  41. 41.
    Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) J Mater Chem 12:1765 doi:10.1039/b200953f Google Scholar
  42. 42.
    Gole A, Murphy C (2004) J Chem Mater 16:3633 doi:10.1021/cm0492336 Google Scholar
  43. 43.
    Maillard M, Giorgio S, Pileni MP (2003) J Phys Chem B 107:2466 doi:10.1021/jp022357q Google Scholar
  44. 44.
    Oliver A, Reyes-Esqueda JA, Cheang-Wong JC, Roman-Velazquez CE, Crespo-Sosa A, Rodriguez-Fernandez L et al (2006) Phys Rev B 74:245425.1Google Scholar
  45. 45.
    Grzelczak M, Perez-Juste J, de Abajo FJG, Liz-Marzan LM (2007) J Phys Chem C 111:6183 doi:10.1021/jp0671502 Google Scholar
  46. 46.
    Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:487 doi:10.1038/nature02020 Google Scholar
  47. 47.
    Liz-Marzan LM (2006) Langmuir 22:32 doi:10.1021/la0513353 Google Scholar
  48. 48.
    Al-Sherbini AA (2004) Colloids Surf A Physicochem Eng Asp 246:61 doi:10.1016/j.colsurfa.2004.06.038 Google Scholar
  49. 49.
    Lee KS, El-Sayed MA (2005) J Phys Chem B 109:20331 doi:10.1021/jp054385p Google Scholar
  50. 50.
    Perez-Juste J, Liz-Marzan LM, Carnie S, Chan DYC, Mulvaney P (2004) Adv Funct Mater 14:571 doi:10.1002/adfm.200305068 Google Scholar
  51. 51.
  52. 52.
    Brioude A, Jiang XC, Pileni MP (2005) J Phys Chem B 109:13138 doi:10.1021/jp0507288 Google Scholar
  53. 53.
    Jiang XC, Brioude A, Pileni MP (2006) Colloids and Surf A Physicochem Eng Asp 277:201Google Scholar
  54. 54.
    Brioude A, Pileni MP (2005) J Phys Chem B 109:23371 doi:10.1021/jp055265k Google Scholar
  55. 55.
    Xu XD, Cortie MB (2006) Adv Funct Mater 16:2170 doi:10.1002/adfm.200500878 Google Scholar
  56. 56.
    Zhang JH, Liu HY, Wang ZL, Ming NB (2007) Appl Phys Lett 90Google Scholar
  57. 57.
    Bukasov R, Shumaker-Parry JS (2007) Nano Lett 7:1113 doi:10.1021/nl062317o Google Scholar
  58. 58.
    Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901 doi:10.1126/science.1066541 Google Scholar
  59. 59.
    Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia YA (2006) J Phys Chem B 110:15666 doi:10.1021/jp0608628 Google Scholar
  60. 60.
    Sun YG, Mayers B, Xia YN (2003) Adv Mater 15:641 doi:10.1002/adma.200301639 Google Scholar
  61. 61.
    Sun YG, Wiley B, Li ZY, Xia YN (2004) J Am Chem Soc 126:9399 doi:10.1021/ja048789r Google Scholar
  62. 62.
    Wang CH, Sun DC, Xia XH (2006) Nanotechnology 17:651 doi:10.1088/0957-4484/17/3/006 Google Scholar
  63. 63.
    Maillard M, Huang PR, Brus L (2003) Nano Lett 3:1611 doi:10.1021/nl034666d Google Scholar
  64. 64.
    Muniz-Miranda M (2004) J Raman Spectrosc 35:839 doi:10.1002/jrs.1220 Google Scholar
  65. 65.
    Guin D, Manorama SV, Latha JNL, Singh S (2007) J Phys Chem C 111:13393 doi:10.1021/jp072646k Google Scholar
  66. 66.
    Tan S, Erol M, Attygalle A, Du H, Sukhishvili S (2007) Langmuir 23:9836 doi:10.1021/la701236v Google Scholar
  67. 67.
    Sergeev BM, Sergeev GB (2007) Colloid J 69:639 doi:10.1134/S1061933X07050158 Google Scholar
  68. 68.
    Hayashi Y, Fujita T, Tokunaga T, Kaneko K, Butler T, Rupesinghe N et al (2007) Diam Relat Mater 16:1200 doi:10.1016/j.diamond.2006.11.039 Google Scholar
  69. 69.
    Chen JY, Li ZY, Chao DN, Zhang WJ, Wang C (2008) Mater Lett 62:692 doi:10.1016/j.matlet.2007.06.047 Google Scholar
  70. 70.
    Xiong YQ, Wu H, Guo Y, Sun Y, Yang DQ, Da D (2000) Thin Solid Films 375:300 doi:10.1016/S0040-6090(00)01253-0 Google Scholar
  71. 71.
    Nie KM, Hu JL, Pang WM, Zhu QR (2007) Mater Lett 61:3567 doi:10.1016/j.matlet.2006.11.115 Google Scholar
  72. 72.
    Pol VG, Grisaru H, Gedanken A (2005) Langmuir 21:3635 doi:10.1021/la047465d Google Scholar
  73. 73.
    Liu GY, Xu S, Qian YL (2000) Acc Chem Res 33:457 doi:10.1021/ar980081s Google Scholar
  74. 74.
    Wang ZL (2000) J Phys Chem B 104:1153 doi:10.1021/jp993593c Google Scholar
  75. 75.
    Wang ZL, Poncharal P, de Heer WA (2000) Microsc Microanal 6:224Google Scholar
  76. 76.
    Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, LondonGoogle Scholar
  77. 77.
    Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL et al (1996) Adv Mater 8:428 doi:10.1002/adma.19960080513 Google Scholar
  78. 78.
    Murray CB, Kagan CR, Bawendi MG (1995) Science 270:1335 doi:10.1126/science.270.5240.1335 Google Scholar
  79. 79.
    Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545 doi:10.1146/annurev.matsci.30.1.545 Google Scholar
  80. 80.
    Alivisatos AP (1996) Science 271:933 doi:10.1126/science.271.5251.933 Google Scholar
  81. 81.
    Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930 doi:10.1103/PhysRevLett.56.930 Google Scholar
  82. 82.
    Guntherodt HJ, Anselmetti D, Meyer E (eds) (1995) Forces in scanning probe methods, vol. 286. Kluwer Academic, Heidelberg, p 644Google Scholar
  83. 83.
    Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig JAD, Lyman CE, Fiori C, Lifshin E (1992) Scanning electron microscopy and x-ray microanalysis, 2nd edn. Plenum, New YorkGoogle Scholar
  84. 84.
    Zhou W, Wang ZL (eds) (2007) Scanning microscopy for nanotechnology, 1st edn. Springer, New York, p 522Google Scholar
  85. 85.
    Wang ZL (ed) (2000) Characterization of nanophase materials. Wiley-VCH, New York, p 406Google Scholar
  86. 86.
  87. 87.
    Barr TL (1994) Modern ESCA: the principles and practice of x-ray photoelectron spectroscopy. CRC, New YorkGoogle Scholar
  88. 88.
    Koningsberger DC, Prins R (eds) (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley-Interscience, New York, p 688Google Scholar
  89. 89.
    Zhang JZ, Schwartzberg AM, Norman T, Grant CD, Liu J, Bridges F et al (2005) Nano Lett 5:809 doi:10.1021/nl0479379 Google Scholar
  90. 90.
    Zhou HS, Honma I, Komiyama H, Haus JW (1994) Phys Rev B Condens Matter 50:12052 doi:10.1103/PhysRevB.50.12052 Google Scholar
  91. 91.
    Averitt RD, Sarkar D, Halas N (1997) J Phys Rev Lett 78:4217 doi:10.1103/PhysRevLett.78.4217 Google Scholar
  92. 92.
    Norman TJ, Grant CD, Schwartzberg AM, Zhang JZ (2005) Opt Mater 27:1197 doi:10.1016/j.optmat.2004.10.016 Google Scholar
  93. 93.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  94. 94.
    Mie G (1908) Annalen Phys 25:377 doi:10.1002/andp.19083300302 Google Scholar
  95. 95.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  96. 96.
    Halperin WP (1986) Rev Mod Phys 58:533 doi:10.1103/RevModPhys.58.533 Google Scholar
  97. 97.
    Genzel L, Martin TP, Kreibig U (1975) Z Phys B 21:339 doi:10.1007/BF01325393 Google Scholar
  98. 98.
    Creighton JA, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881 doi:10.1039/ft9918703881 Google Scholar
  99. 99.
    Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) J Phys Chem B 101:3706 doi:10.1021/jp962922n Google Scholar
  100. 100.
    Hodak JH, Henglein A, Hartland GV (2000) J Phys Chem B 104:9954 doi:10.1021/jp002256x Google Scholar
  101. 101.
    Noguez C (2005) Opt Mater 27:1204 doi:10.1016/j.optmat.2004.11.012 Google Scholar
  102. 102.
    Asano S, Yamamoto G (1975) Appl Opt 14:29Google Scholar
  103. 103.
    Lind AC, Greenber JM (1966) J Appl Phys 37:3195 doi:10.1063/1.1703184 Google Scholar
  104. 104.
    Sosa IO, Noguez C, Barrera RG (2003) J Phys Chem B 107:6269 doi:10.1021/jp0274076 Google Scholar
  105. 105.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668 doi:10.1021/jp026731y Google Scholar
  106. 106.
    Noguez C (2007) J Phys Chem C 111:3806 doi:10.1021/jp066539m Google Scholar
  107. 107.
    Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) J Phys Chem B 110:2150 doi:10.1021/jp056606x Google Scholar
  108. 108.
    Yang WH, Schatz GC, Vanduyne RP (1995) J Chem Phys 103:869 doi:10.1063/1.469787 Google Scholar
  109. 109.
    Fuchs R (1975) Phys Rev B 11:1732 doi:10.1103/PhysRevB.11.1732 Google Scholar
  110. 110.
    Kumbhar AS, Kinnan MK, Chumanov G (2005) J Am Chem Soc 127:12444 doi:10.1021/ja053242d Google Scholar
  111. 111.
    Nikoobakht B, El-Sayed MA (2003) J Phys Chem 107:3372Google Scholar
  112. 112.
    Orendorff CJ, Gole A, Sau T, Murphy CJ (2005) Anal Chem 77:3261Google Scholar
  113. 113.
    Orendorff CJ, Gearheart L, Jana NR, Murphy C (2006) J Phys Chem Chem Phys 8:165 doi:10.1039/b512573a Google Scholar
  114. 114.
    Van Duyne RP (2002) Abstr Pap Am Chem Soc 223:003Google Scholar
  115. 115.
    Haynes CL, Van Duyne RP (2003) Abstr Pap Am Chem Soc 225:U618Google Scholar
  116. 116.
    Haynes CL, Yonzon CR, Zhang XY, Van Duyne RP (2005) J Raman Spectrosc 36:471 doi:10.1002/jrs.1376 Google Scholar
  117. 117.
    Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Nano Lett 6:2060 doi:10.1021/nl061286u Google Scholar
  118. 118.
    Wiley B, Sun YG, Mayers B, Xia YN (2005) Chemistry A Eur J 11:454 doi:10.1002/chem.200400927 Google Scholar
  119. 119.
    Hu M, Petrova H, Sekkinen AR, Chen JY, McLellan JM, Li ZY et al (2006) J Phys Chem B 110:19923 doi:10.1021/jp0621068 Google Scholar
  120. 120.
    Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD et al (2006) Chem Soc Rev 35:1084 doi:10.1039/b517615h Google Scholar
  121. 121.
    Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) J Chem Phys 111:4729 doi:10.1063/1.479235 Google Scholar
  122. 122.
    Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Nano Lett 4:2355 doi:10.1021/nl048610a Google Scholar
  123. 123.
    Radloff C, Halas NJ (2004) Nano Lett 4:1323 doi:10.1021/nl049597x Google Scholar
  124. 124.
    Schwartzberg AM, Oshiro TY, Zhang JZ, Huser T, Talley CE (2006) Anal Chem 78:4732 doi:10.1021/ac060220g Google Scholar
  125. 125.
    Reyes-Esqueda JA, Torres-Torres C, Cheang-Wong JC, Crespo-Sosa A, Rodriguez-Fernandez L, Noguez C et al (2008) Opt Express 16:710 doi:10.1364/OE.16.000710 Google Scholar
  126. 126.
    González AL, Reyes-Esqueda JA, Noguez C (2008) J Phys Chem C 112:7356 doi:10.1021/jp800432q Google Scholar
  127. 127.
    Figliozzi P, Sun L, Jiang Y, Matlis N, Mattern B, Downer MC et al (2005) Phys Rev Lett 94:047401Google Scholar
  128. 128.
    Tao A, Sinsermsuksakul P, Yang PD (2006) Angew Chem Int Ed 45:4597 doi:10.1002/anie.200601277 Google Scholar
  129. 129.
    Baletto F, Ferrando R (2005) Rev Mod Phys 77:371 doi:10.1103/RevModPhys.77.371 Google Scholar
  130. 130.
    Sun Y, Xia Y (2002) Science 298:2176 doi:10.1126/science.1077229 Google Scholar
  131. 131.
    Zhou M, Chen S, Zhao S (2006) J Phys Chem B 110:4510 doi:10.1021/jp060200i Google Scholar
  132. 132.
    Chen Y, Gu X, Nie C-G, Jiang Z-Y, Xie Z-X, Lin C-J (2005) Chem Commun (Camb) 33:4181 doi:10.1039/b504911c Google Scholar
  133. 133.
    Salzemann C, Brioude A, Pileni MP (2006) J Phys Chem B 110:7208 doi:10.1021/jp0601567 Google Scholar
  134. 134.
    Banerjee IA, Yu LT, Matsui H (2003) Proc Natl Acad Sci U S A 100:14678 doi:10.1073/pnas.2433456100 Google Scholar
  135. 135.
    Gonzalez AL, Noguez C (2007) Phys Status Solidi 4:4118 doi:10.1002/pssc.200675903 Google Scholar
  136. 136.
    Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) J Vac Sci Technol B Int J Devoted Microelectron Nanometer Struct Processing Meas Phenom 19:1091 doi:10.1116/1.1387089 Google Scholar
  137. 137.
    Yang CY (1979) J Cryst Growth 47:274 doi:10.1016/0022-0248(79)90252-5 Google Scholar
  138. 138.
    Kuo CH, Chiang TF, Chen LJ, Huang MH (2004) Langmuir 20:7820 doi:10.1021/la049172q Google Scholar
  139. 139.
    Wei G, Zhou HL, Liu ZG, Song YH, Wang L, Sun LL et al (2005) J Phys Chem B 109:8738 doi:10.1021/jp044314a Google Scholar
  140. 140.
    Nilius N, Ernst N, Freund HJ (2000) Phys Rev Lett 84:3994 doi:10.1103/PhysRevLett.84.3994 Google Scholar
  141. 141.
    Marks LD (1994) Rep Prog Phys 57:603 doi:10.1088/0034-4885/57/6/002 Google Scholar
  142. 142.
    Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RR, Zou SL (2005) MRS Bull 30:368Google Scholar
  143. 143.
    Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering: physics and applications (Topics in applied physics). vol. 103. Springer, Heidelberg, p 19Google Scholar
  144. 144.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR et al (2006) Faraday Discuss 132:9 doi:10.1039/b513431p Google Scholar
  145. 145.
    Haruta M, Kageyama H, Kamijo N, Kobayashi T, Delannay F (1989) Fine structure of novel gold catalysts prepared by coprecipitation. In: Inui T (ed) Successful design of catalysts: future requirements and development. vol. 44. Elsevier Science, Amsterdam, p 33Google Scholar
  146. 146.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405 doi:10.1246/cl.1987.405 Google Scholar
  147. 147.
    Li KR, Stockman MI, Bergman DJ (2005) Phys Rev B 72:035427Google Scholar
  148. 148.
    Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R (2006) Phys Rev Lett 97:060801Google Scholar
  149. 149.
    Roman-Velazquez CE, Noguez C, Barrera RG (2000) Phys Rev B 61:10427 doi:10.1103/PhysRevB.61.10427 Google Scholar
  150. 150.
    Roman-Velazquez CE, Noguez C, Barrera RG (2000) Optical characterization of a spheroidal nanoparticle on a substrate. In: Materials Research Society Symposium on Nanophase and Nanocomposite Materials IIIGoogle Scholar
  151. 151.
    Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Phys Rev B 65:235424 doi:10.1103/PhysRevB.65.235424 Google Scholar
  152. 152.
    Lazzari R, Simonsen I, Jupille J (2003) Europhys Lett 61:541 doi:10.1209/epl/i2003-00163-6 Google Scholar
  153. 153.
    Lazzari R, Jupille J, Layet JM (2003) Phys Rev B 68:045428 doi:10.1103/PhysRevB.68.045428 Google Scholar
  154. 154.
    Xu G, Tazawa M, Jin P, Nakao S (2005) Appl Phys A Mater Sci Process 80:1535 doi:10.1007/s00339–003–2395-y Google Scholar
  155. 155.
    Garnett JCM (1904) Philos Trans R Soc Lond A Contain Pap Math Phys Character 203:385Google Scholar
  156. 156.
    Noguez C, Barrera RG (1998) Phys Rev B 57:302 doi:10.1103/PhysRevB.57.302 Google Scholar
  157. 157.
    Penninkhof JJ, Polman A, Sweatlock LA, Maier SA, Atwater HA, Vredenberg AM et al (2003) Appl Phys Lett 83:4137 doi:10.1063/1.1627936 Google Scholar
  158. 158.
    Sweatlock LA, Maier SA, Atwater HA, Penninkhof JJ, Polman A (2005) Phys Rev B 71:235408Google Scholar
  159. 159.
    Lazarides AA, Schatz GC (2000) J Phys Chem B 104:460 doi:10.1021/jp992179+ Google Scholar
  160. 160.
    Barrera RG, Noguez C, Anda EV (1992) J Chem Phys 96:1574 doi:10.1063/1.462141 Google Scholar
  161. 161.
    Kumar S, Cukier RI (1989) J Phys Chem 93:4334 doi:10.1021/j100347a084 Google Scholar
  162. 162.
    Cichocki B, Felderhof BU (1989) J Chem Phys 90:4960 doi:10.1063/1.456596 Google Scholar
  163. 163.
    Barrera RG, Delcastillomussot M, Monsivais G, Villasenor P, Mochan WL (1991) Phys Rev B 43:13819 doi:10.1103/PhysRevB.43.13819 Google Scholar
  164. 164.
    Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatz GC, Gunnarsson L et al (2003) J Phys Chem B 107:7337 doi:10.1021/jp034234r Google Scholar
  165. 165.
    Hicks EM, Zou SL, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L et al (2005) Nano Lett 5:1065 doi:10.1021/nl0505492 Google Scholar
  166. 166.
    Nau D, Schonhardt A, Bauer C, Christ A, Zentgraf T, Kuhl J et al (2007) Phys Rev Lett 98:133902Google Scholar
  167. 167.
    Zhang JZ (1997) Acc Chem Res 30:423 doi:10.1021/ar960178j Google Scholar
  168. 168.
    Zhang JZ (2000) J Phys Chem B 104:7239 doi:10.1021/jp000594s Google Scholar
  169. 169.
    Smith BA, Zhang JZ, Giebel U, Schmid G (1997) Chem Phys Lett 270:139 doi:10.1016/S0009-2614(97)00339-4 Google Scholar
  170. 170.
    Link S, El-Sayed MA (1999) J Phys Chem B 103:8410 doi:10.1021/jp9917648 Google Scholar
  171. 171.
    Link S, Furube A, Mohamed MB, Asahi T, Masuhara H, El-Sayed MA (2002) J Phys Chem B 106:945 doi:10.1021/jp013311k Google Scholar
  172. 172.
    Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL (1997) J Phys Chem B 101:3713 doi:10.1021/jp962923f Google Scholar
  173. 173.
    Hodak J, Martini I, Hartland GV (1998) Chem Phys Lett 284:135 doi:10.1016/S0009-2614(97)01369-9 Google Scholar
  174. 174.
    Faulhaber AE, Smith BA, Andersen JK, Zhang JZ (1996) Mol Cryst Liq Cryst Science Technol Sect A Mol Cryst Liq Cryst 283:25Google Scholar
  175. 175.
    Darugar Q, Landes C, Link S, Schill A, El-Sayed MA (2003) Chem Phys Lett 373:284 doi:10.1016/S0009-2614(03)00213-6 Google Scholar
  176. 176.
    Link S, Hathcock DJ, Nikoobakht B, El-Sayed MA (2003) Adv Mater 15:393 doi:10.1002/adma.200390088 Google Scholar
  177. 177.
    Hodak JH, Henglein A, Hartland GV (2000) J Chem Phys 112:5942 doi:10.1063/1.481167 Google Scholar
  178. 178.
    Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) J Phys Chem B 106:3410 doi:10.1021/jp014259v Google Scholar
  179. 179.
    Grant CD, Schwartzberg AM, Yang YY, Chen SW, Zhang JZ (2004) Chem Phys Lett 383:31 doi:10.1016/j.cplett.2003.10.126 Google Scholar
  180. 180.
    Hartland GV (2004) Phys Chem Chem Phys 6:5263 doi:10.1039/b413368d Google Scholar
  181. 181.
    Hu M, Petrova H, Chen JY, McLellan JM, Siekkinen AR, Marquez M et al (2006) J Phys Chem B 110:1520 doi:10.1021/jp0571628 Google Scholar
  182. 182.
    Petrova H, Lin CH, Hu M, Chen JY, Siekkinen AR, Xia YN et al (2007) Nano Lett 7:1059 doi:10.1021/nl0702766 Google Scholar
  183. 183.
    Petrova H, Lin CH, de Liejer S, Hu M, McLellan JM, Siekkinen AR et al (2007) J Chem Phys 126:094709 doi:10.1063/1.2672907 Google Scholar
  184. 184.
    Sando GM, Berry AD, Campbell PM, Baronavski AP, Owrutsky JC (2007) Plasmonics 2:23 doi:10.1007/s11468–006–9021–8 Google Scholar
  185. 185.
    Elsayed-Ali HE, Norris TB, Pessot MA, Mourou GA (1987) Phys Rev Lett 58:1212 doi:10.1103/PhysRevLett.58.1212 Google Scholar
  186. 186.
    Schoenlein RW, Lin WZ, Fujimoto JG, Easley GL (1987) Phys Rev Lett 58:1680 doi:10.1103/PhysRevLett.58.1680 Google Scholar
  187. 187.
    Sun CK, Vallee F, Acioli LH, Ippen EP, Fujimoto JG (1994) Phys Rev B Condens Matter 50:15337 doi:10.1103/PhysRevB.50.15337 Google Scholar
  188. 188.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, PhiladelphiaGoogle Scholar
  189. 189.
    Nisoli M, DeSilvestri S, Cavalleri A, Malvezzi AM, Stella A, Lanzani G et al (1997) Phys Rev B Condens Matter 55:13424 doi:10.1103/PhysRevB.55.R13424 Google Scholar
  190. 190.
    Hodak JH, Martini I, Hartland GV (1998) J Chem Phys 108:9210 doi:10.1063/1.476374 Google Scholar
  191. 191.
    Voisin C, Del Fatti N, Christofilos D, Vallee F (2001) J Phys Chem B 105:2264 doi:10.1021/jp0038153 Google Scholar
  192. 192.
    Voisin C, Christofilos D, Loukakos PA, Del Fatti N, Vallee F, Lerme J et al (2004) Phys Rev B 69:195416Google Scholar
  193. 193.
    von Plessen G, Perner M, Feldmann J (2000) Appl Phys B 71:381Google Scholar
  194. 194.
    Hartland GV, Hu M, Wilson O, Mulvaney P, Sader JE (2002) J Phys Chem B 106:743 doi:10.1021/jp013887+ Google Scholar
  195. 195.
    Grant CD, Schwartzberg AM, Norman TJ, Zhang JZ (2003) J Am Chem Soc 125:549 doi:10.1021/ja028532y Google Scholar
  196. 196.
    Lazarides AA, Schatz GC (2000) J Chem Phys 112:2987 doi:10.1063/1.480873 Google Scholar
  197. 197.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) J Am Chem Soc 122:4640 doi:10.1021/ja993825l Google Scholar
  198. 198.
    Heath JR, Knobler CM, Leff DV (1997) J Phys Chem B 101:189 doi:10.1021/jp9611582 Google Scholar
  199. 199.
    Shipway AN, Lahav M, Gabai R, Willner I (2000) Langmuir 16:8789 doi:10.1021/la000316k Google Scholar
  200. 200.
    Abiko F, Tomoo K, Mizuno A, Morino S, Imataka H, Ishida T (2007) Biochem Biophys Res Commun 355:667 doi:10.1016/j.bbrc.2007.01.198 Google Scholar
  201. 201.
    Chen LL, Deng L, Liu LL, Peng ZH (2007) Biosens Bioelectron 22:1487 doi:10.1016/j.bios.2006.06.038 Google Scholar
  202. 202.
    Du XZ, Wang YC (2007) J Phys Chem B 111:2347 doi:10.1021/jp0653196 Google Scholar
  203. 203.
    Dong H, Cao XD, Li CM, Hu WH (2008) Biosens Bioelectron 23:1055 doi:10.1016/j.bios.2007.10.026 Google Scholar
  204. 204.
    Wilkop T, Wang ZZ, Cheng Q (2004) Langmuir 20:11141 doi:10.1021/la048177k Google Scholar
  205. 205.
    Yuk JS, Hong DG, Jung HI, Ha KS (2006) Sens Actuators B Chem 119:673 doi:10.1016/j.snb.2006.01.031 Google Scholar
  206. 206.
    Li Y, Lee HJ, Corn RM (2006) Nucleic Acids Res 34:6416 doi:10.1093/nar/gkl738 Google Scholar
  207. 207.
    Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267 doi:10.1146/annurev.physchem.58.032806.104607 Google Scholar
  208. 208.
    Stuart DA, Yonzon CR, Zhang XY, Lyandres O, Shah NC, Glucksberg MR et al (2005) Anal Chem 77:4013 doi:10.1021/ac0501238 Google Scholar
  209. 209.
    Haemers S, Koper GJM, van der Leeden MC, Frens G (2002) Langmuir 18:2069 doi:10.1021/la010506a Google Scholar
  210. 210.
    Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596 doi:10.1021/ja020393x Google Scholar
  211. 211.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) J Am Chem Soc 127:2264 doi:10.1021/ja044087q Google Scholar
  212. 212.
    Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) J Phys Chem B 106:853 doi:10.1021/jp013638l Google Scholar
  213. 213.
    Yonzon CR, Stuart DA, Zhang XY, McFarland AD, Haynes CL, Van Duyne RP (2005) Talanta 67:438 doi:10.1016/j.talanta.2005.06.039 Google Scholar
  214. 214.
    Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW et al (2005) Anal Biochem 344:161Google Scholar
  215. 215.
    Haes AJ, Zou SL, Zhao J, Schatz GC, Van Duyne RP (2006) J Am Chem Soc 128:10905 doi:10.1021/ja063575q Google Scholar
  216. 216.
    Meli MV, Lennox RB (2007) J Phys Chem C 111:3658 doi:10.1021/jp067241z Google Scholar
  217. 217.
    Stancu IC, Fernandez-Gonzalez A, Salzer R (2007) J Optoelectronics Adv Mater 9:1883Google Scholar
  218. 218.
    Toderas F, Baia M, Baia L, Astilean S (2007) Nanotechnology 18:255702Google Scholar
  219. 219.
    Fu E, Chinowsky T, Nelson K, Johnston K, Edwards T, Helton K et al (2007) SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Ann N Y Acad Sci 1098:335Google Scholar
  220. 220.
    Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Anal Biochem 363:239 doi:10.1016/j.ab.2007.01.030 Google Scholar
  221. 221.
    Ray K, Szmacinski H, Enderlein J, Lakowicz JR (2007) Appl Phys Lett 90:251116 doi:10.1063/1.2751125 Google Scholar
  222. 222.
    Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Nano Lett 7:2101 doi:10.1021/nl071084d Google Scholar
  223. 223.
    Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) J Phys Chem C 111:11784 doi:10.1021/jp067887r Google Scholar
  224. 224.
    Ferraro JR, Nakamoto K (1994) Introductory Raman spectroscopy. Academic, BostonGoogle Scholar
  225. 225.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163 doi:10.1016/0009-2614(74)85388-1 Google Scholar
  226. 226.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215 doi:10.1021/ja00457a071 Google Scholar
  227. 227.
    Jeanmaire DL, Vanduyne RP (1977) J Electroanal Chem 84:1 doi:10.1016/S0022-0728(77)80224-6 Google Scholar
  228. 228.
    Moskovits M (1978) J Chem Phys 69:4159 doi:10.1063/1.437095 Google Scholar
  229. 229.
    Michaels AM, Jiang J, Brus L (2000) J Phys Chem B 104:11965 doi:10.1021/jp0025476 Google Scholar
  230. 230.
    Brus L (2001) Abstr Pap Am Chem Soc 221:112Google Scholar
  231. 231.
    Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964 doi:10.1021/jp034632u Google Scholar
  232. 232.
    Nie SM, Emery SR (1997) Science 275:1102 doi:10.1126/science.275.5303.1102 Google Scholar
  233. 233.
    Kneipp K, Harrison GR, Emory SR, Nie SM (1999) Chimia (Aarau) 53:35Google Scholar
  234. 234.
    Nie SM (2001) Abstr Pap Am Chem Soc 221:U244Google Scholar
  235. 235.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R et al (1997) Phys Rev Lett 78:1667 doi:10.1103/PhysRevLett.78.1667 Google Scholar
  236. 236.
    Kneipp K, Kneipp H, Manoharan R, Itzkan I, Dasari RR, Feld MS (1998) J Raman Spectrosc 29:743 doi:10.1002/(SICI)1097-4555(199808)29:8<743::AID-JRS294>3.0.CO;2-M Google Scholar
  237. 237.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Phys 247:155 doi:10.1016/S0301-0104(99)00165-2 Google Scholar
  238. 238.
    Seballos L, Olson TY, Zhang JZ (2006) J Chem Phys 125:234706 doi:10.1063/1.2404648 Google Scholar
  239. 239.
    Seballos L, Richards N, Stevens DJ, Patel M, Schuresko L, Lokey S et al (2007) Chem Phys Lett 447:335 doi:10.1016/j.cplett.2007.09.040 Google Scholar
  240. 240.
    Moskovits M (1985) Rev Mod Phys 57:783 doi:10.1103/RevModPhys.57.783 Google Scholar
  241. 241.
    Moskovits M (2005) J Raman Spectrosc 36:485 doi:10.1002/jrs.1362 Google Scholar
  242. 242.
    Schatz GC, Van Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. John Wiley and Sons Ltd, ChichesterGoogle Scholar
  243. 243.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143 doi:10.1088/0953-8984/4/5/001 Google Scholar
  244. 244.
    Otto A (2005) J Raman Spectrosc 36:497 doi:10.1002/jrs.1355 Google Scholar
  245. 245.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys Condens Matter 14:R597 doi:10.1088/0953-8984/14/18/202 Google Scholar
  246. 246.
    Alexander TA, Pellegrino PM, Gillespie JB (2004) Near-infrared surface-enhanced Raman scattering (SERS) mediated discrimination of single, optically trapped, bacterial spores. Smart Medical and Biomedical Sensor Technology, BellinghamGoogle Scholar
  247. 247.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) J Phys Chem B 109:312 doi:10.1021/jp040442n Google Scholar
  248. 248.
    Ji XH, Xu SP, Wang LY, Liu M, Pan K, Yuan H, Ma L, Xu WQ, Li JH, Bai YB, Li TJ (2005) Colloids Surf A Physicochem Eng Asp 257–58:171Google Scholar
  249. 249.
    Kneipp J, Kneipp H, Kneipp K (2006) Proc Natl Acad Sci U S A 103:17149 doi:10.1073/pnas.0608262103 Google Scholar
  250. 250.
    Chithrani BD, Chan WCW (2007) Nano Lett 7:1542 doi:10.1021/nl070363y Google Scholar
  251. 251.
    Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C et al (2002) Appl Spectrosc 56:150 doi:10.1366/0003702021954557 Google Scholar
  252. 252.
    Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Anal Chem 76:7064 doi:10.1021/ac049093j Google Scholar
  253. 253.
    Jensen RA, Sherin J, Emory SR (2007) Appl Spectrosc 61:832 doi:10.1366/000370207781540105 Google Scholar
  254. 254.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) Nano Lett 7:2819 doi:10.1021/nl071418z Google Scholar
  255. 255.
    Shamsaie A, Jonczyk M, Sturgis J, Robinson JP, Irudayaraj J (2007) J Biomed Opt 12:205021 doi:10.1117/1.2717549 Google Scholar
  256. 256.
    Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH et al (2006) Nano Lett 6:1687 doi:10.1021/nl060865w Google Scholar
  257. 257.
    Schwartzberg AM, Zhang JZ (2008) J Phys Chem C (in press)Google Scholar
  258. 258.
    Olson TY, Schwartzberg AM, Orme CA, Talley CE, O’Connell B, Zhang JZ (2008) J Phys Chem C 112:6319 doi:10.1021/jp7116714 Google Scholar
  259. 259.
    Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) J Am Chem Soc 129:16249 doi:10.1021/ja077243c Google Scholar
  260. 260.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N et al (2004) Technol Cancer Res Treat 3:33Google Scholar
  261. 261.
    Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115 doi:10.1021/ja057254a Google Scholar
  262. 262.
    El-Sayed IH, Huang XH, El-Sayed MA (2006) Cancer Lett 239:129 doi:10.1016/j.canlet.2005.07.035 Google Scholar
  263. 263.
    Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanomedicine 2:681 doi:10.2217/17435889.2.5.681 Google Scholar
  264. 264.
    Oyelere AK, Chen PC, Huang XH, El-Sayed IH, El-Sayed MA (2007) Bioconjug Chem 18:1490 doi:10.1021/bc070132i Google Scholar
  265. 265.
    Jain PK, Huang X, El-Sayed IH, El-Sayad MA (2007) Plasmonics 2:107 doi:10.1007/s11468-007-9031-1 Google Scholar
  266. 266.
    Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM et al (2008) Mol Cancer Ther 7:1730 doi:10.1158/1535-7163.MCT-08-0016 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA
  2. 2.Instituto de FísicaUniversidad Nacional Autóma de MéxicoMéxico D.F.México

Personalised recommendations