Plasmonics

, 3:103 | Cite as

Plasmonic Notch Filter Design Based on Long-range Surface Plasmon Excitation Along Metal Grating

  • Zhi Wu
  • Joseph W. Haus
  • Qiwen Zhan
  • Robert L. Nelson
Article

Abstract

A single notch plasmonic spectral filter design using evanescently coupled resonant ultrathin metal grating is numerically studied in this article. Due to excitation and coupling of long range surface plasmon between the metal grating nanowires, a deep and narrow reflection spectrum dip can be obtained. Narrower spectral bandwidth is achieved through decreased damping from the existence of large dielectric gaps between the grating nanowires. This physical explanation is confirmed by the field distribution calculation. As an example, a single notch filter design with full width half maximum band width less than 3 nm centered at 808 nm is presented.

Keywords

Surface plasmon Notch filter Metal grating Evanescent wave 

Notes

Acknowledgements

Zhi Wu is supported by Dayton Area Graduate Studies Institute Graduate Scholarship.

References

  1. 1.
    Raether H (1988) Surface Plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  2. 2.
    Schildkraut JS (1988) Long-range surface plasmon electrooptic modulator. Appl Opt 27(21):4587–4590Google Scholar
  3. 3.
    Solgaard O, Ho F, Thackara JI, Bloom DM (1992) High frequency attenuated total internal reflection light modulator. Appl Phys Lett 61(21):2500–2502 doi: 10.1063/1.108161 CrossRefGoogle Scholar
  4. 4.
    Jung C, Yee S, Kuhn K (1995) Electro-optics polymer light modulator based on surface plasmon resonance. Appl Opt 34(6):946–949CrossRefGoogle Scholar
  5. 5.
    Krasavin AV, MacDonald KF, Zheludev NI (2004) High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl Phys Lett 85(16):3369–3371 doi: 10.1063/1.1808240 CrossRefGoogle Scholar
  6. 6.
    Chyou J-J, Chu S-C, Shih Z-H, Lin C-Y, Chen S-J (2005) Fabrication and metrology of an electro-optic polymer light modulator based on waveguide coupled surface plasmon resonance. Opt Eng 44(3):034001 doi: 10.1117/1.1868775 CrossRefGoogle Scholar
  7. 7.
    Wu Z, Nelson RL, Haus JW, Zhan Q (2008) Plasmonic electro-optic modulator design using a resonant metal grating. Opt Lett 33(6):551–553 doi: 10.1364/OL.33.000551 CrossRefGoogle Scholar
  8. 8.
    Kajenski PJ (1997) Tunable optical filter using long-range surface plasmons. Opt Eng 36(5):1537–1541 doi: 10.1117/1.601376 CrossRefGoogle Scholar
  9. 9.
    Wang Y, Pain B (1999) Scanning surface-plasmon filters for miniature spectrometers. NASA, Washington, DC Tech. Brief 23, NPO-20179Google Scholar
  10. 10.
    Harmer SW, Townsend PD (2002) Wavelength selectivity of on-axis surface plasmon laser filters. J Phys D Appl Phys 35(20):2516–2519 doi: 10.1088/0022-3727/35/20/309 CrossRefGoogle Scholar
  11. 11.
    Lim Y, Chung S, Kim S, Han S, Lee B (2006) Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography. IEEE Photonics Technol Lett 18(23):2532–2534 doi: 10.1109/LPT.2006.887208 CrossRefGoogle Scholar
  12. 12.
    Nenninger GG, Tobiska P, Homola J, Yee SS (2001) Long-range surface plasmon for high-resolution surface plasmon resonance sensors. Sens Actuator B 74(1–3):145–151 doi: 10.1016/S0925-4005(00)00724-3 CrossRefGoogle Scholar
  13. 13.
    Naraoka R, Kajikawa K (2005) Phase detection of surface plasmon resonance using rotating analyzer method. Sens Actuators B 107(2):952–956 doi: 10.1016/j.snb.2004.12.044 CrossRefGoogle Scholar
  14. 14.
    Wang JJ, Chen L, Kwan S, Liu F, Deng X (2005) Resonant grating filters as refractive index sensors for chemical and biological detections. J Vac Sci Technol B 23(6):3006–3010 doi: 10.1116/1.2101774 CrossRefGoogle Scholar
  15. 15.
    Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal Chem 71(18):3928–3934 doi: 10.1021/ac990517x CrossRefGoogle Scholar
  16. 16.
    Chiang H-P, Yeh H-T et al (2004) Surface plasmon resonance monitoring of temperature via phase measurement. Opt Commun 241(4–6):409–418 doi: 10.1016/j.optcom.2004.07.045 CrossRefGoogle Scholar
  17. 17.
    Chiang H-P, Lin J-L, Chang R, Su S-Y (2005) High-resolution angular measurement using surface-plasmon-resonance via phase interrogation at optimal incident wavelengths. Opt Lett 30(20):2727–2729 doi: 10.1364/OL.30.002727 CrossRefGoogle Scholar
  18. 18.
    Sarid D (1981) Long-range surface plasma waves on very thin metal films. Phys Rev Lett 47(26):1927–2730 doi: 10.1103/PhysRevLett.47.1927 CrossRefGoogle Scholar
  19. 19.
    Quail JC, Rako JG, Simon HJ (1983) Long-range surface-plasmon modes in silver and aluminum films. Opt Lett 8(7):377–379Google Scholar
  20. 20.
    Palik ED (1998) Handbook of optical constants of solid. Academic, San DiegoGoogle Scholar
  21. 21.
    Moharam MG, Grann EB, Pommet DA (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12(5):1068–1076Google Scholar
  22. 22.
    Moharam MG, Pommet DA, Grann EB, Gaylord TK (1995) Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 12(5):1077–1086Google Scholar
  23. 23.
    Jette S, Charbonneau R, Lahoud N (2005) Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides. Opt Express 13(12):4674–4682 doi: 10.1364/OPEX.13.004674 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhi Wu
    • 1
  • Joseph W. Haus
    • 1
  • Qiwen Zhan
    • 1
  • Robert L. Nelson
    • 2
  1. 1.Electro-Optics Graduate ProgramUniversity of DaytonDaytonUSA
  2. 2.Air Force Research LaboratoryWright–Patterson Air Force BaseDaytonUSA

Personalised recommendations