, Volume 3, Issue 2–3, pp 49–57 | Cite as

Sensitivity of Optical Fiber Sensor Based on Surface Plasmon Resonance: Modeling and Experiments



In this paper, surface plasmon resonance curves of an optical fiber-based sensor were investigated. From an experimental and theoretical perspective, the response curves were analyzed and discussed. Precisely, such curves were calculated by modeling the analyte/metallic layer interface using a multilayer system, including the effects of roughness. Then, the experimental response curves observed in solutions with different refractive indices were compared to the simulated curves. Good agreement was obtained with respect to the resonance peak location and the shape of the curves. Consequently, these results enabled us to predict the ideal functioning conditions of the sensor, i.e., the working parameters corresponding to the best sensitivities of detection.


SPR Optical fiber Numerical simulation Sensitivity Plasmonics sensor 


  1. 1.
    Reather H (1988) Surface plasmons on smooth and rough surfaces and on gratings, vol 111. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Homola J, Yee SS, Myszka D (2002) Surface plasmon resonance biosensors. In: Ligler FS, Rowe Taitt CA (eds) Optical biosensors: present and future. Elsevier, Amsterdam, pp 207–251Google Scholar
  3. 3.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRefGoogle Scholar
  4. 4.
    Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch A 23:2135–2136Google Scholar
  5. 5.
    Phillips KS, Cheng Q (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387:1831–1840CrossRefGoogle Scholar
  6. 6.
    Jorgenson R, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuators B 12:213–220CrossRefGoogle Scholar
  7. 7.
    Slavik R, Homola J, Ctyroky J (1998) Miniaturization of fiber optic surface plasmon resonance sensor. Sens Actuators B 51:311–315CrossRefGoogle Scholar
  8. 8.
    Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13CrossRefGoogle Scholar
  9. 9.
    Homola J, Yee SS, Gauglitzand G (1999) Surface plasmon resonance sensors: review. Anal Sens Actuators B 54:3–15CrossRefGoogle Scholar
  10. 10.
    Ince R, Narayanaswamy R (2006) Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal Chim Acta 569:1–20CrossRefGoogle Scholar
  11. 11.
    Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface Plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129CrossRefGoogle Scholar
  12. 12.
    Leung A, Shankar PM, Mutharasanand R (2007) A review of Fiber-optic biosensors. Sens Actuators B 125:688–703CrossRefGoogle Scholar
  13. 13.
    Balaa K, Kanso M, Cuenot S, Minea T, Louarn G (2007) Experimental realization and numerical simulation of wavelength-modulated fiber optic sensor based on surface plasmon resonance–SPR. Sens Actuators B Chem 126:198–203CrossRefGoogle Scholar
  14. 14.
    Chaigneau M, Balaa K, Minea T, Louarn G (2007) Plasmon resonance micro-sensor for droplets analysis. Opt Lett 32:2435–2437CrossRefGoogle Scholar
  15. 15.
    Kanso M, Cuenot S, Louarn G (2007) Roughness effect on the SPR measurements for an optical fiber configuration: experimental and numerical approaches. J Opt A Pure Appl Opt 9:586–592CrossRefGoogle Scholar
  16. 16.
    Lin WB, Jaffrezic-Renault N, Gagnaire A, Gagnaire H (2000) The effects of polarisation of the incident light- modeling and analysis of a SPR multimode optical fiber sensor. Sens Actuators 84:198–204CrossRefGoogle Scholar
  17. 17.
    Xu Y, Jones NB, Fothergille JC, Hanning CD (2000) Analytical estimates of the characteristics of surface plasmon resonance fiber-optic sensors. Mod Opt 47:1099–1110CrossRefGoogle Scholar
  18. 18.
    Watanabe M, Kajikawa K (2003) an optical fiber biosensor based on anomalous reflection of gold. Sens Actuators B 89:126–130CrossRefGoogle Scholar
  19. 19.
    Sharma AK, Gupta BD (2005) On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt Commun 245:159–169CrossRefGoogle Scholar
  20. 20.
    Sharma AK, Gupta BD (2007) Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors. Plasmonics 2:51–54CrossRefGoogle Scholar
  21. 21.
    Chiu M-H, Shih C-H, Chi M-H (2007) Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens Actuators B 123:1120–1124CrossRefGoogle Scholar
  22. 22.
    Wolfe WL (1978) Properties of optical materials. Section 7. In: Driscoll WG (ed) Handbook of optics sponsored by the Optical Society of America. McGraw-Hill, New YorkGoogle Scholar
  23. 23.
    Tropf WJ, Thomas ME, Haris TJ (1995) Properties of crystals and glasses. Chapter 33. In: Bass M (ed) Handbook of optics. vol. 2. 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Etchegoin PG, Ru ECL, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705CrossRefGoogle Scholar
  25. 25.
    Leng J, Opsal J, Chu H, Senko M, Aspnes DE (1998) Analytic representations of the dielectric functions of materials for device and structural modeling. Thin Solid Film 313:132–136CrossRefGoogle Scholar
  26. 26.
    Kovacs GJ, Scott GD (1977) Optical excitation of surface plasma waves in layered media. Phys Rev B 16:1297CrossRefGoogle Scholar
  27. 27.
    Aspnes DE (1982) Optical properties of thin films. Thin Solid Film 89:249–262CrossRefGoogle Scholar
  28. 28.
    Yeh P (1988) Optical waves in layered media. Wiley, New York, pp 102–117Google Scholar
  29. 29.
    Xu Y, Cottenden A, Jones NB (2006) A theoretical evaluation of fiber- optic evanescent wave absorption in spectroscopy and sensors. Opt Lasers Eng 44:93–101CrossRefGoogle Scholar
  30. 30.
    Villatoro J, Monzón-Hernández D, Majía E (2003) Fabrication and modelling of uniform-waist single mode tapered optical fiber sensors. Appl Opt 42:2278–2283CrossRefGoogle Scholar
  31. 31.
    Yin X, Hesselink L (2006) Goos-Hänchen shift surface plasmon resonance sensor. Appl Phys Lett 89:261108CrossRefGoogle Scholar
  32. 32.
    Baibarac M, Mihut L, Louarn G, Mevellec JY, Wery J, Lefrant S, Baltog I (1999) Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. J Raman Spectrosc 30:1105–1113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institut des Matériaux Jean Rouxel, UMR 6502CNRS-Université de NantesNantesFrance

Personalised recommendations