Plasmonics

, Volume 2, Issue 3, pp 129–141

Modeling Fluorescence Enhancement from Metallic Nanocavities

Article
  • 193 Downloads

Abstract

We study the excitation and emission enhancement mechanisms for fluorescence from molecules confined within subwavelength metal apertures, or nanocavities. The variation in these enhancements with wavelength is calculated for individual round nanocavities in gold of varying diameters and dielectric environments. Enhancement peaks are associated with localized surface plasmon resonances of the nanocavity. In addition, these enhancements strongly vary with location within the nanocavity. These results should aid future work in maximizing overall fluorescence enhancement from these structures.

Keywords

Fluorescence Surface plasmons Nanocavities 

References

  1. 1.
    Ebbeson TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Fischer UC (1986) Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence. J Opt Soc Am B 3:1239–1244CrossRefGoogle Scholar
  3. 3.
    Lezec HJ, Thio T (2004) Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt Express 12:3629–3651CrossRefGoogle Scholar
  4. 4.
    Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182CrossRefGoogle Scholar
  5. 5.
    Bouwkamp CJ (1950) On Bethe’s theory of diffraction by small holes. Philips Res Rep 5:321–332Google Scholar
  6. 6.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  7. 7.
    Martin-Moreno L, Garcia-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117CrossRefGoogle Scholar
  8. 8.
    Sarychev AK, Podolsky VA, Dykhne AM, Shalaev VM (2002) Resonance transmittance through a metal film with subwavelength holes. IEEE J Quantum Electron 38:956–963CrossRefGoogle Scholar
  9. 9.
    Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403CrossRefGoogle Scholar
  10. 10.
    Treacy MMJ (2002) Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys Rev B 66:195105CrossRefGoogle Scholar
  11. 11.
    Sarrazin M, Vigneron J-P, Vigoureux J-M (2003) Role of Wood anomalies in optical properties of thin metallic films with a bidirectional array of subwavelength holes. Phys Rev B 67:085415CrossRefGoogle Scholar
  12. 12.
    Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92:107401CrossRefGoogle Scholar
  13. 13.
    Chang S-H, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission through isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165CrossRefGoogle Scholar
  14. 14.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686CrossRefGoogle Scholar
  15. 15.
    Degiron A, Lezec HJ, Yamamoto N, Ebbesen TW (2004) Optical transmission properties of a single subwavelength aperture in a real metal. Opt Commun 239:61–66CrossRefGoogle Scholar
  16. 16.
    Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang S-H, Gray SK, Schatz GC, Brown DB, Kimball CW (2004) Surface plasmons at single nanoholes in Au films. Appl Phys Lett 85:467–469CrossRefGoogle Scholar
  17. 17.
    Popov E, Bonod N, Neviere M, Rigneault H, Lenne P, Chaumet P (2005) Surface plasmon excitation on a single subwavelength hole in a metal sheet. Appl Opt 44:2332–2337CrossRefGoogle Scholar
  18. 18.
    Catrysse PB, Shin H, Fan S (2005) Propagating modes in subwavelength cylindrical holes. J Vac Sci Technol B 23:2675–2678CrossRefGoogle Scholar
  19. 19.
    Zakharian A, Mansuripur M, Moloney J (2004) Transmission of light through small elliptical apertures. Opt Express 12:2631–2648CrossRefGoogle Scholar
  20. 20.
    Fan W, Zhang S, Minhas B, Malloy KJ, Brueck SRJ (2005) Enhanced infrared transmission through subwavelength coaxial metallic arrays. Phys Rev Lett 94:033902CrossRefGoogle Scholar
  21. 21.
    Gordon R, Brolo AG (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938CrossRefGoogle Scholar
  22. 22.
    Collin S, Pardo F, Pelouard J-L (2007) Waveguiding in nanoscale metallic apertures. Opt Express 15:4310–4320CrossRefGoogle Scholar
  23. 23.
    Shin H, Catrysse PB, Fan S (2005) Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes. Phys Rev B 72:085436CrossRefGoogle Scholar
  24. 24.
    Shuford KL, Ratner MA, Gray SK, Schatz GC (2007) Electric field enhancement and light transmission in cylindrical nanoholes. J Comput Theor Nanosci 4:239–246Google Scholar
  25. 25.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Optical spetroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007CrossRefGoogle Scholar
  26. 26.
    Heng X, Cui X, Knapp DW, Wu J, Yaqoob Z, McDowell EJ, Psaltis D, Yang C (2006) Characterization of light collection through a subwavelength aperture from a point source. Opt Express 14:10410–10425CrossRefGoogle Scholar
  27. 27.
    Liu Y, Blair S (2003) Fluorescence enhancement from an array of sub-wavelength metal apertures. Opt Lett 28:507–509CrossRefGoogle Scholar
  28. 28.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018CrossRefGoogle Scholar
  29. 29.
    Wenger J, Dintinger J, Bonod N, Popov E, Lenne P-F, Ebbesen TW, Rigneault H (2006) Raman scattering and fluorescence emission in a single nanoaperture: optimizing the local intensity enhancement. Opt Commun 267:224–228CrossRefGoogle Scholar
  30. 30.
    Liu Y, Bishop J, Williams L, Blair S, Herron JN (2004) Biosensing based upon molecular confinement in metallic nanocavity arrays. Nanotechnology 15:1368–1374CrossRefGoogle Scholar
  31. 31.
    Liu C, Kamaev V, Vardeny ZV (2005) Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. Appl Phys Lett 86:143501CrossRefGoogle Scholar
  32. 32.
    Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavenagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127:14936–14941CrossRefGoogle Scholar
  33. 33.
    Kim JH, Moyer PJ (2007) Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity. Appl Phys Lett 90:131111CrossRefGoogle Scholar
  34. 34.
    Liu Y, Mahdavi F, Blair S (2005) Enhanced fluorescence transduction properties of metallic nanocavity arrays. IEEE J Sel Top Quantum Electron 11:778–784CrossRefGoogle Scholar
  35. 35.
    Rigneault H, Capoulade J, Dintinger J, Wenger J, Bonod N, Popov E, Ebbesen TW, Lenne P-F (2005) Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys Rev Lett 95:117401CrossRefGoogle Scholar
  36. 36.
    Wenger J, Lenne P-F, Popov E, Rigneault H, Dintinger J, Ebbesen TW (2005) Single-molecule fluorescence in rectangular nano-apertures. Opt Express 13:7035–7044CrossRefGoogle Scholar
  37. 37.
    Popov E, Neievre M, Wenger J, Lenne P-F, Rigneault H, Chaumet P, Bonod N, Dintinger J, Ebbesen TW (2006) Field enhancement in single subwavelength apertures. J Opt Soc Am A 23:2342–2348CrossRefGoogle Scholar
  38. 38.
    Yuan HX, Xu BX, Wang HF, Chong TC (2006) Field enhancement of nano-sized metal aperture with and without surrounding corrugations through resonant surface plasmons. Jpn J Appl Phys 45:787–791CrossRefGoogle Scholar
  39. 39.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garvia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822CrossRefGoogle Scholar
  40. 40.
    Kühn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402CrossRefGoogle Scholar
  41. 41.
    Wenger J, Cluzel B, Dintinger J, Bonod N, Fehrembach A-L, Popov E, Lenne P-F, Ebbesen TW, Rigneault H (2007) Radiative and non-radiative photokinetics alteration inside a single metallic nanometric aperture. J Phys Chem C 111:11469–11474CrossRefGoogle Scholar
  42. 42.
    Leutenegger M, Gösch M, Perentes A, Hoffmann P, Martin OJF, Lasser T (2006) Confining the sample volume for fluorescence correlation spectroscopy using a sub-wavelength sized aperture. Opt Express 14:956–969CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.NanometricsSan JoseUSA

Personalised recommendations