, Volume 2, Issue 4, pp 217–230

Profile Simulation and Fabrication of Gold Nanostructures by Separated Nanospheres with Oblique Deposition and Perpendicular Etching

  • Xiaodong Zhou
  • Selven Virasawmy
  • Wolfgang Knoll
  • Kai Yu Liu
  • Man Siu Tse
  • Li Wei Yen


This paper investigates in detail the profiles of the nanostructures fabricated by nanosphere lithography through oblique deposition and perpendicular etching. 2D or 3D nanostructures can be achieved by this cost-effective method. Because the optical response of a particular nanoparticle depends on its size and shape, this angle deposition method can produce various shapes of nanostructures, which are suitable for localized surface plasmon resonance biosensor applications. The nanostructure profiles under various deposition and etching conditions are simulated in our work. The calculated 3D profiles are verified by the 3D nanostructures fabricated in our experiments, and the calculated 2D profiles are in good agreement with the fabricated nanocrescents reported by another research group. This paper gives a full theoretical solution of the obtainable nanostructure shapes by nanosphere lithography utilizing oblique deposition and perpendicular etching.


Nanostructure Nanosphere lithography Angle deposition Numerical simulation 


  1. 1.
    Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, Garcia de Abajo FJ (2003) Optical properties of gold nanorings. Phys Rev Lett 90(5):057401CrossRefGoogle Scholar
  2. 2.
    Haynes CL, Duyne RPV (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRefGoogle Scholar
  3. 3.
    Astilean S (2004) Fabrication of periodic metallic nanostructures by using nanosphere lithography. Rom Rep Phys 56(3):340–345Google Scholar
  4. 4.
    Haes AJ, Stuart DA, Nie S, Duyne RPV (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14(4):355–367CrossRefGoogle Scholar
  5. 5.
    Jensen TR, Malinsky MD, Haynes CL, Duyne RPV (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104(45):10549–10556CrossRefGoogle Scholar
  6. 6.
    Hulteen JC, Duyne RPV (1995) Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A Vac Surf Films 13(3):1553–1558CrossRefGoogle Scholar
  7. 7.
    Shumaker-Parry JS, Rochholz H, Kreiter M (2005) Fabrication of crescent-shaped optical antennas. Adv Mater 17:2131–2134CrossRefGoogle Scholar
  8. 8.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefGoogle Scholar
  9. 9.
    Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRefGoogle Scholar
  10. 10.
    Haynes CL, McFarland AD, Zhao L, Duyne RPV, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342CrossRefGoogle Scholar
  11. 11.
    Grigorenko AN, Geim AK, Gleeson HF, Zhang Y, Firsov AA, Khrushchev IY, Petrovic J (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438:335–338CrossRefGoogle Scholar
  12. 12.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefGoogle Scholar
  13. 13.
    Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5(1):119–124CrossRefGoogle Scholar
  14. 14.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xiaodong Zhou
    • 1
  • Selven Virasawmy
    • 2
  • Wolfgang Knoll
    • 1
  • Kai Yu Liu
    • 3
  • Man Siu Tse
    • 3
  • Li Wei Yen
    • 1
  1. 1.Institute of Materials Research and EngineeringSingaporeSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations