Plasmonics

, Volume 2, Issue 2, pp 55–64 | Cite as

Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells

  • Hope T. Beier
  • Christopher B. Cowan
  • I-Hsien Chou
  • James Pallikal
  • James E. Henry
  • Melodie E. Benford
  • Joseph B. Jackson
  • Theresa A. Good
  • Gerard L. Coté
Article

Abstract

Currently, no methods exist for the definitive diagnosis of AD premortem. β-amyloid, the primary component of the senile plaques found in patients with this disease, is believed to play a role in its neurotoxicity. We are developing a nanoshell substrate, functionalized with sialic acid residues to mimic neuron cell surfaces, for the surface-enhanced Raman detection of β-amyloid. It is our hope that this sensing mechanism will be able to detect the toxic form of β-amyloid, with structural and concentration information, to aid in the diagnosis of AD and provide insight into the relationship between β-amyloid and disease progression. We have been successfully able to functionalize the nanoshells with the sialic acid residues to allow for the specific binding of β-amyloid to the substrate. We have also shown that a surface-enhanced Raman spectroscopy response using nanoshells is stable and concentration-dependent with detection into the picomolar range.

Keywords

Surface-enhanced Raman spectroscopy SERS Raman spectroscopy Nanoshells β-amyloid Alzheimer’s disease Congo red Self-assembled monolayer 

Notes

Acknowledgements

The authors acknowledge the support of the National Institutes of Health (grant no. STTR-1R41AG025586-01 and grant no. R21-NS050346-01). The authors acknowledge the support of the Air Force (STTR FA9550-05-C-0019). Hope Beier acknowledges the support of a National Science Foundation Graduate Research Fellowship.

References

  1. 1.
    Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang YQ, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117CrossRefGoogle Scholar
  2. 2.
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population-prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122CrossRefGoogle Scholar
  3. 3.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRefGoogle Scholar
  4. 4.
    Minino AM, Heron MP, Smith BL (2006) Deaths: preliminary data for 2004. Natl Vital Stat Rep 54(19):1–50Google Scholar
  5. 5.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766Google Scholar
  6. 6.
    Ernst RL, Hay JW (1994) The U.S. economic and social costs of Alzheimer’s disease revisited. Am J Public Health 84(8):1261–1264Google Scholar
  7. 7.
    Ariga T, Kobayashi K, Hasegawa A, Kiso M, Ishida H, Miyatake T (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch Biochem Biophys 388(2):225–230CrossRefGoogle Scholar
  8. 8.
    Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang JP, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919CrossRefGoogle Scholar
  9. 9.
    Bergamaschini L, Rossi E, Storini C, Pizzimenti S, Distaso M, Perego C, De Luigi A, Vergani C, De Simoni MG (2004) Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer’s disease. J Neurosci 24(17):4181–4186CrossRefGoogle Scholar
  10. 10.
    Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM (2004) Efficient reversal of Alzheimer’s disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci USA 101(40):14326–14332CrossRefGoogle Scholar
  11. 11.
    DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98(15):8850–8855CrossRefGoogle Scholar
  12. 12.
    Etcheberrigaray R, Tan M, Dewachter I, Kuiperi C, Van der Auwera I, Wera S, Qiao LX, Bank B, Nelson TJ, Kozikowski AP, Van Leuven F, Alkon DL (2004) Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc Natl Acad Sci USA 101(30):11141–11146CrossRefGoogle Scholar
  13. 13.
    Gelinas DS, DaSilva K, Fenili D, George-Hyslop PS, McLaurin J (2004) Immunotherapy for Alzheimer’s disease. Proc Natl Acad Sci USA 101:14657–14662CrossRefGoogle Scholar
  14. 14.
    Ghanta J, Shen CL, Kiessling LL, Murphy RM (1996) A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem 271(47):29525–29528CrossRefGoogle Scholar
  15. 15.
    Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJF, Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38(4):547–554CrossRefGoogle Scholar
  16. 16.
    Mandavilli A (2006) The amyloid code. Nat Med 12(7):747–751CrossRefGoogle Scholar
  17. 17.
    Mount C, Downton C (2006) Alzheimer disease: progress or profit? Nat Med 12(7):780–784CrossRefGoogle Scholar
  18. 18.
    Patel D, Henry J, Good T (2006) Attenuation of beta-amyloid induced toxicity by sialic acid-conjugated dendrimeric polymers. Biochim Biophys Acta 1760(12):1802–1809Google Scholar
  19. 19.
    Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88(9):1337–1342CrossRefGoogle Scholar
  20. 20.
    Davis PC, Gray L, Albert M, Wilkinson W, Hughes J, Heyman A, Gado M, Kumar AJ, Destian S, Lee C, Duvall E, Kido D, Nelson MJ, Bello J, Weathers S, Jolesz F, Kikinis R, Brooks M (1992) The consortium to establish a registry for Alzheimers-disease (Cerad) .3. Reliability of a standardized Mri evaluation of Alzheimers-disease. Neurology 42(9):1676–1680Google Scholar
  21. 21.
    Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimers-disease. Neurology 36(7):879–887Google Scholar
  22. 22.
    Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede non-memory cognitive defects in early Alzheimers-type dementia. Arch Neurol 43(9):882–885Google Scholar
  23. 23.
    Blennow K (2004) CSF biomarkers for mild cognitive impairment. J Intern Med 256:224–234CrossRefGoogle Scholar
  24. 24.
    Mattson MP, Mark RJ, Furukawa K, Bruce AJ (1997) Disruption of brain cell ion homeostasis in Alzheimer’s disease by oxy radicals, and signaling pathways that protect therefrom. Chem Res Toxicol 10(5):507–517CrossRefGoogle Scholar
  25. 25.
    Rapport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99:6364–6369CrossRefGoogle Scholar
  26. 26.
    Small GW (2002) Brain-imaging surrogate markers for detection and prevention of age-related memory loss. J Mol Neurosci 19(1–2):17–21CrossRefGoogle Scholar
  27. 27.
    Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208CrossRefGoogle Scholar
  28. 28.
    Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557CrossRefGoogle Scholar
  29. 29.
    Wang SSS, Rymer DL, Good TA (2001) Reduction in cholesterol and sialic acid content protects cells from the toxic effects of beta-amyloid peptides. J Biol Chem 276(45):42027–42034CrossRefGoogle Scholar
  30. 30.
    Zetterberg H, Wahnlund L-O, Blennow K (2003) Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci Lett 352:67–69CrossRefGoogle Scholar
  31. 31.
    Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-protein specifically disrupt cognitive function. Nat Neurosci 8(1):79–84CrossRefGoogle Scholar
  32. 32.
    Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100(18):10417–10422CrossRefGoogle Scholar
  33. 33.
    Hardy J, Selkoe DJ (2002) Medicine—the amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356CrossRefGoogle Scholar
  34. 34.
    Lee S, Fernandez EJ, Good TA (2007) Role of aggregation conditions in structure, stability, and toxicity of intermediates in the Aβ fibril formation pathway. Protein Sci 16(4):723–732CrossRefGoogle Scholar
  35. 35.
    Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91(25):12243–12247CrossRefGoogle Scholar
  36. 36.
    Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584CrossRefGoogle Scholar
  37. 37.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271CrossRefGoogle Scholar
  38. 38.
    Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4(6):1029–1034CrossRefGoogle Scholar
  39. 39.
    Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102(7):2273–2276CrossRefGoogle Scholar
  40. 40.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  41. 41.
    Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76(14):2444–2447CrossRefGoogle Scholar
  42. 42.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  43. 43.
    Fleischmann M, Hendra PJ, McQuillan AJ (1973) Raman-spectra from electrode surfaces. J Chem Soc Chem Commun (3):80–81Google Scholar
  44. 44.
    Jeanmaire DL, Vanduyne RP (1977) Surface raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84(1):1–20CrossRefGoogle Scholar
  45. 45.
    Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770CrossRefGoogle Scholar
  46. 46.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14(18):R597–R624CrossRefGoogle Scholar
  47. 47.
    Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75(19):2897–2899CrossRefGoogle Scholar
  48. 48.
    Jackson JB, Halas NJ (2003) Controlling the surface enhanced Raman effect on nanoshells in a film geometry. Abstr Pap Am Chem Soc 225:U447Google Scholar
  49. 49.
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci USA 101(52):17930–17935CrossRefGoogle Scholar
  50. 50.
    Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J Chem Phys 111(10):4729–4735CrossRefGoogle Scholar
  51. 51.
    Zhu ZH, Zhu T, Liu ZF (2004) Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 15(3):357–364CrossRefGoogle Scholar
  52. 52.
    Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22)Google Scholar
  53. 53.
    ChooSmith LP, GarzonRodriguez W, Glabe CG, Surewicz WK (1997) Acceleration of amyloid fibril formation by specific binding of A beta-(1–40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272(37):22987–22990CrossRefGoogle Scholar
  54. 54.
    Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276(27):24985–24990CrossRefGoogle Scholar
  55. 55.
    Kakio A, Yano Y, Takai D, Kuroda Y, Matsumoto O, Kozutsumi Y, Matsuzaki K (2004) Interaction between amyloid beta-protein aggregates and membranes. J Pept Sci 10(10):612–621CrossRefGoogle Scholar
  56. 56.
    Matsuzaki K, Horikiri C (1999) Interactions of amyloid beta-peptide (1–40) with ganglioside-containing membranes. Biochemistry 38(13):4137–4142CrossRefGoogle Scholar
  57. 57.
    Wakabayashi M, Okada T, Kozutsumi Y, Matsuzaki K (2005) GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochem Biophys Res Commun 328(4):1019–1023CrossRefGoogle Scholar
  58. 58.
    Williamson MP, Suzuki Y, Bourne NT, Asakura T (2006) Binding of amyloid beta-peptide to ganglioside micelles is dependent on histidine-13. Biochem J 397:483–490CrossRefGoogle Scholar
  59. 59.
    Iconomidou VA, Chryssikos GD, Gionis V, Hoenger A, Hamodrakas SJ (2003) FT-Raman spectroscopy as diagnostic tool of Congo red binding to amyloids. Biopolymers 72(3):185–192CrossRefGoogle Scholar
  60. 60.
    Miura T, Yamamiya C, Sasaki M, Suzuki K, Takeuchi H (2002) Binding mode of Congo red to Alzheimer’s amyloid beta-peptide studied by UV Raman spectroscopy. J Raman Spectrosc 33(7):530–535CrossRefGoogle Scholar
  61. 61.
    Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276(25):22715–22721CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hope T. Beier
    • 1
  • Christopher B. Cowan
    • 2
  • I-Hsien Chou
    • 1
  • James Pallikal
    • 2
  • James E. Henry
    • 2
    • 4
  • Melodie E. Benford
    • 1
  • Joseph B. Jackson
    • 3
  • Theresa A. Good
    • 2
  • Gerard L. Coté
    • 1
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Chemical & Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  3. 3.Nanospectra Biosciences, Inc.HoustonUSA
  4. 4.Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations