, Volume 2, Issue 2, pp 51–54 | Cite as

Comparison of Performance Parameters of Conventional and Nano-plasmonic Fiber Optic Sensors



A detailed comparative analysis is carried out between two fiber optic surface plasmon resonance (SPR) sensor probes with different bimetallic configurations. One consists of a step arrangement of thin layers of silver and gold. Another one consists of alloy layer formed of spherical silver and gold nanoparticles. Their sensitivity and detection accuracy are compared. Better configuration is predicted with proper logics and rationales.


Plasmon Optical fiber Sensitivity Signal-to-noise ratio Sensor Bimetallic layer Nanoparticle alloy 


  1. 1.
    Ehler TT, Neo LJ (1995) Surface plasmon studies of thin silver/gold bimetallic films. Langmuir 11:4177–4179CrossRefGoogle Scholar
  2. 2.
    Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533CrossRefGoogle Scholar
  3. 3.
    Gaudry M, Lerme J, Cottancin E, Pellarin M, Vialle JL, Broyer M, Prevel B, Treilleux M, Melinon P (2001) Optical properties of (AuxAg1−x)n clusters embedded in alumina: evolution with size and stoichiometry. Phys Rev B 64:085407CrossRefGoogle Scholar
  4. 4.
    Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirsov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70CrossRefGoogle Scholar
  5. 5.
    Sharma AK, Gupta BD (2005) On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor based on bimetallic layers. Opt Commun 245:159–169CrossRefGoogle Scholar
  6. 6.
    Sharma AK, Gupta BD (2006) Fiber optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle film. Nanotechnology 17:124–131CrossRefGoogle Scholar
  7. 7.
    Ghatak A, Thyagarajan K (1999) Introduction to fiber optics. Cambridge, NY 82–83Google Scholar
  8. 8.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag 5–10Google Scholar
  9. 9.
    Roy RK, Mandal SK, Pal AK (2003) Effect of interfacial alloying on the surface plasmon resonance of nanocrystalline Au-Ag multilayer thin films. Eur Phys J B 33:109–114CrossRefGoogle Scholar
  10. 10.
    Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 11:1099–1119CrossRefGoogle Scholar
  11. 11.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3–15CrossRefGoogle Scholar
  12. 12.
    Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B 54:16–24CrossRefGoogle Scholar
  13. 13.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482CrossRefGoogle Scholar
  14. 14.
    Cheng SF, Chau LK (2003) Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal Chem 75:16–21CrossRefGoogle Scholar
  15. 15.
    SA. Maier, MD. Friedman, PE. Barclay, O. Painter (2005) Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl Phys Lett 86:071103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Physics DepartmentIndian Institute of Technology Delhi Hauz KhasNew DelhiIndia

Personalised recommendations