Plasmonics

, Volume 2, Issue 2, pp 47–50

Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption

  • Thomas W. H. Oates
  • Adrian Keller
  • Stefan Facsko
  • Arndt Mücklich
Article

Abstract

Aligned silver nanoparticles, grown by combining two simple bottom-up techniques, are reported. Physical vapor-deposited silver adatoms are shown to form nanoparticles preferentially in the valleys of rippled silicon templates prepared by low-energy ion bombardment. A 35-nm ripple periodicity produced highly aligned structures with a 0.21 eV polarization-dependent shift in the plasmon resonance peak. The speed and simplicity of the method is viable for cost-effective, large-scale production of mesoscale aligned nanostructures with adjustable periodicity.

Key words

Self-organization Self-alignment Plasmon coupling SERS Island films 

References

  1. 1.
    Barth JV, Costantini GC, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–679CrossRefGoogle Scholar
  2. 2.
    Brune H (1998) Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf Sci Rep 31:121–229Google Scholar
  3. 3.
    Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706CrossRefGoogle Scholar
  4. 4.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496CrossRefGoogle Scholar
  5. 5.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefGoogle Scholar
  6. 6.
    Doremus RH, Rao P (1996) Optical properties of nanosized gold particles. J Mater Res 11(11):2834–2840Google Scholar
  7. 7.
    Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and widths. J Phys Chem B 107:7343–7350CrossRefGoogle Scholar
  8. 8.
    Haynes CL, Van-Duyne RP (2003) Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Lett 3(7):939–943CrossRefGoogle Scholar
  9. 9.
    Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–737CrossRefGoogle Scholar
  10. 10.
    Fort E, Ricolleau C, Sao-Pueyo J (2003) Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates. Nano Lett 3(1):65–67CrossRefGoogle Scholar
  11. 11.
    Bradley RM, Harper JME (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol A 6(4):2390–2395CrossRefGoogle Scholar
  12. 12.
    Ziberi B, Frost F, Hoche T, Rauschenbach B (2005) Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phys. Rev. B 72(23):235310CrossRefGoogle Scholar
  13. 13.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  14. 14.
    Oates TWH, Mücklich A (2005) Evolution of plasmon resonances during plasma deposition of silver nanoparticles. Nanotechnology 16:2606–2611CrossRefGoogle Scholar
  15. 15.
    Lazzari R, Simonsen I (2002) GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients. Thin Solid Films 419:124–136CrossRefGoogle Scholar
  16. 16.
    Yamaguchi T, Yoshida S, Kinbara A (1974) Optical effect of the substrate on the anomalous absorption of aggregated silver films. Thin Solid Films 21:173–187CrossRefGoogle Scholar
  17. 17.
    Facsko S, Dekorsy T, Koerdt C, Trappe C, Kurz H, Vogt A, Hartnagel HL (1999) Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285:1551–1553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thomas W. H. Oates
    • 1
  • Adrian Keller
    • 1
  • Stefan Facsko
    • 1
  • Arndt Mücklich
    • 1
  1. 1.Forschungszentrum Dresden-RossendorfInstitute of Ion Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations