Plasmonics

, Volume 1, Issue 2–4, pp 135–140

Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory

  • Johan Grand
  • Pierre-Michel Adam
  • Anne-Sophie Grimault
  • Alexandre Vial
  • Marc Lamy de la Chapelle
  • Jean-Louis Bijeon
  • Sergei Kostcheev
  • Pascal Royer
Article

Abstract

Localized Surface Plasmons (LSP) on metallic nanoparticles of different shapes are investigated by extinction spectroscopy. Experimental results are compared to simulations by a Finite-Difference Time-Domain (FDTD) method. Three different shapes of nanoparticles are compared, oblates, prolates and ellipsoids, in terms of spectral tunability of the LSP resonance (LSPR). It is found that the complete geometry of the nanoparticle must be given to truly define the LSP resonance and that ellipsoids offer the widest spectral tunability.

Key words

Electron beam lithography FDTD Metallic nanoparticles Surface plasmons 

PACS

78.67.Bf 7145.Gm 

References

  1. 1.
    Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874CrossRefGoogle Scholar
  2. 2.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings, vol 111 of springer tracts in modern physics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Krenn JR, Leitner A, Aussenegg FR (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific, CaliforniaGoogle Scholar
  4. 4.
    Zayats AV, Smolyaninov II (2003) Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A Pure Appl Opt 5:16CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424: 824CrossRefGoogle Scholar
  6. 6.
    Pendry J (1999) Playing tricks with light. Science 285: 1687CrossRefGoogle Scholar
  7. 7.
    Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69(9): 4159CrossRefGoogle Scholar
  8. 8.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review, Sens Actuators B 54:3CrossRefGoogle Scholar
  9. 9.
    Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095CrossRefGoogle Scholar
  10. 10.
    Grand J, Lamy de la Chapelle M, Bijeon J-L, Adam P-M, Vial A, Royer P (2005) Role of localized surface plasmons in surface-enhanced raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72(3):033407CrossRefGoogle Scholar
  11. 11.
    Haynes CL, McFarland AD, Zhao LL, van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337CrossRefGoogle Scholar
  12. 12.
    Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Moller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949CrossRefGoogle Scholar
  13. 13.
    Little JW, Ferrell TL, Callcott TA, Arakawa ET (1982) Radiative decay of surface plasmons on oblate spheroids. Phys Rev B 26:5953CrossRefGoogle Scholar
  14. 14.
    Royer P, Bijeon J-L, Goudonnet JP, Inagaki T, Arakawa ET (1989) Optical absorbance of silver oblate particles: substrate and shape effects. Surf Sci 217:384CrossRefGoogle Scholar
  15. 15.
    Little JW, Callcott TA, Ferrell TL, Arakawa ET (1984) Surface-plasmon radiation from ellipsoidal silver spheroids. Phys Rev B 29:1606CrossRefGoogle Scholar
  16. 16.
    Wokaun, A (1984) Surface-enhanced electromagnetic processes. Solid state phys 38:223CrossRefGoogle Scholar
  17. 17.
    Ditlbacher H, Krenn JR, Lamprecht B, Leitner A, Aussenegg FR (2000) Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25:563Google Scholar
  18. 18.
    Grand J, Kostcheev S, Bijeon JL, Lamy de la Chapelle M, Adam PM, Rumyantseva A, Lérondel G, Royer P (2003) Optimization of SERS-active substrates for near-field Raman spectroscopy. Synth Met 139:621CrossRefGoogle Scholar
  19. 19.
    Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) Optical properties of Ag and Au nanowire gratings. J Appl Phys 90(8):3825CrossRefGoogle Scholar
  20. 20.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Chem Phys B 107:668CrossRefGoogle Scholar
  21. 21.
    Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957CrossRefGoogle Scholar
  22. 22.
    Meier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8:581CrossRefGoogle Scholar
  23. 23.
    Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Chem Phys B 107:7343CrossRefGoogle Scholar
  24. 24.
    Hao E, Schatz GC (2004) Electromagnetic field around silver nanoparticles and dimers. J Phys Chem B 120(1):357CrossRefGoogle Scholar
  25. 25.
    Vial A, Grimault A-S, Macías D, Barchiesi D, Lamy de la Chapelle M (2005) Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with the FDTD method. Phys Rev B 71(8):085416CrossRefGoogle Scholar
  26. 26.
    Taflove A, Hagness SC (2000) Computationnal electrodynamics: the Finite-Difference Time-Domain method. Artech House, Norwood, MassachussettsGoogle Scholar
  27. 27.
    Kunz K, Luebbers R (1993) The finite difference time domain method for electromagnetics. CRC, Boca Raton, FloridaGoogle Scholar
  28. 28.
    Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign. Appl Phys B 63:381Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Johan Grand
    • 1
  • Pierre-Michel Adam
    • 1
  • Anne-Sophie Grimault
    • 1
  • Alexandre Vial
    • 1
  • Marc Lamy de la Chapelle
    • 1
  • Jean-Louis Bijeon
    • 1
  • Sergei Kostcheev
    • 1
  • Pascal Royer
    • 1
  1. 1.Institut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation OptiqueTroyes cedexFrance

Personalised recommendations