, Volume 1, Issue 1, pp 61–66 | Cite as

Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging

  • Paul MulvaneyEmail author
  • Jorge Pérez-Juste
  • Michael Giersig
  • Luis M. Liz-Marzán
  • Carlos Pecharromán
Original Paper


The color of small gold rods changes dramatically when electrons are injected by chemical reductants. The longitudinal and transverse plasmon modes are both found to blue-shift, and the shift is larger for rods with larger aspect ratios. The color changes are visible to the eye for rods with aspect ratios around 2–3. It is found that the surface plasmon band is damped when charging becomes high. The effects are in qualitative agreement with a model in which the gold plasma frequency increases due to an increase in electron density.


Gold rods Surface plasmon band Electron density Plasmon band shift Color changes 



P.M. wishes to thank the Humboldt Foundation for financial support and Stiftung Caesar. This work was supported through ARC Grant DP 0451651. LMLM acknowledges financial support from the Spanish Ministerio de Educación y Ciencia and FEDER (project # MAT2004-02991).


  1. 1.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788CrossRefGoogle Scholar
  2. 2.
    Henglein A, Mulvaney P, Linnert T (1991) Chemistry of Agn Aggregates in Aqueous-Solution—Nonmetallic Oligomeric Clusters and Metallic Particles. Faraday Discuss 92:31CrossRefGoogle Scholar
  3. 3.
    Henglein A, Meisel D (1998) Radiolytic Control of the Size of Colloidal Gold Nanoparticles. Langmuir 14:7392CrossRefGoogle Scholar
  4. 4.
    Ung T, Giersig M, Dunstan D, Mulvaney P (1997) Spectroelectrochemistry of Colloidal Silver. Langmuir 13:1773CrossRefGoogle Scholar
  5. 5.
    Chapman R, Mulvaney P (2001) Electro-optical shifts in silver nanoparticle films. Chem Phys Lett 349:358CrossRefGoogle Scholar
  6. 6.
    Toyota A, Nakashima N, Sagara T (2004) UV-visible transmission-absorption spectral study of Au nanoparticles on a modified ITO electrode at constant potentials and under potential modulation. J Electroanal Chem 565:335CrossRefGoogle Scholar
  7. 7.
    Schmidt GM, Curley-Fiorino ME (1975) In: Bard AJ (ed) Encyclopaedia of Electrochemistry of the Elements. Dekker, New YorkGoogle Scholar
  8. 8.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957CrossRefGoogle Scholar
  9. 9.
    Pérez-Juste J, Liz-Marzán LM, Carnie S, Chan DYC, Mulvaney P (2004) Electric Field Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv Funct Mater 14:571CrossRefGoogle Scholar
  10. 10.
    Wang ZL, Mohamed MB, Link S, El-Sayed MA (1999) Surface reconstruction of the unstable {110} surface in gold nanorods. Surf Sci 440:L809CrossRefGoogle Scholar
  11. 11.
    Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:77402CrossRefGoogle Scholar
  12. 12.
    Palik E (1985) Handbook of Optical Constants of Solids Academic Press, Orlando, FLGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Paul Mulvaney
    • 1
    • 2
    Email author
  • Jorge Pérez-Juste
    • 3
  • Michael Giersig
    • 1
  • Luis M. Liz-Marzán
    • 3
  • Carlos Pecharromán
    • 4
  1. 1.Nanoparticle Technology Group, Caesar StiftungBonnGermany
  2. 2.Chemistry SchoolUniversity of MelbourneParkvilleAustralia
  3. 3.Departamento de Química FísicaUniversidade de VigoVigoSpain
  4. 4.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain

Personalised recommendations