Advertisement

Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass

  • 2 Accesses

Abstract

The spectral phase of the femtosecond laser field is an important parameter that affects the upconversion (UC) luminescence efficiency of dopant lanthanide ions. In this work, we report an experimental study on controlling the UC luminescence efficiency in Sm3+:NaYF4 glass by 800-nm femtosecond laser pulse shaping using spectral phase modulation. The optimal phase control strategy efficiently enhances or suppresses the UC luminescence intensity. Based on the laser-power dependence of the UC luminescence intensity and its comparison with the luminescence spectrum under direct 266-nm femtosecond laser irradiation, we propose herein an excitation model combining non-resonant two-photon absorption with resonance-mediated three-photon absorption to explain the experimental observations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    S. Y. Han, R. R. Deng, X. J. Xie, and X. G. Liu, Enhancing luminescence in lanthanide-doped upconversion nanoparticles Angew. Chem. Int. Ed. 53(44), 11702 (2014)

  2. 2.

    S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals Adv. Mater. 16(23-24), 2102 (2004)

  3. 3.

    F. Wang and X. G. Liu, Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles J. Am. Chem. Soc. 130(17), 5642 (2008)

  4. 4.

    S. H. Wen, J. J. Zhou, K. Z. Zheng, A. Bednarkiewicz, X. G. Liu, and D. Y. Jin, Advances in highly doped upconversion nanoparticles Nat. Commun. 9(1), 2415 (2018)

  5. 5.

    F. Wang and X. G. Liu, Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation Acc. Chem. Res. 47(4), 1378 (2014)

  6. 6.

    K. Patel, V. Blair, J. Douglas, Q. L. Dai, Y. H. Liu, S. Q. Ren, and R. Brennan, Structural effects of lanthanide dopants on alumina Sci. Rep. 7(1), 39946 (2017)

  7. 7.

    D. K. Xu, A. M. Li, L. Yao, H. Lin, S. H. Yang, and Y. L. Zhang, Lanthanide-doped KLu2F7 nanoparticles with high upconversion luminescence performance: A comparative study by Judd-Ofelt analysis and energy transfer mechanistic investigation Sci. Rep. 7(1), 43189 (2017)

  8. 8.

    Q. Shao, Z. Yang, G. Zhang, Y. Hu, Y. Dong, and J. Jiang, Multifunctional lanthanide-doped core/shell nanoparticles: Integration of upconversion luminescence, temperature sensing, and photothermal conversion properties ACS Omega 3(1), 188 (2018)

  9. 9.

    F. Xu, Y. Zhao, M. Hu, P. Zhang, N. Kong, R. Liu, C. Liu, and S. K. Choi, Lanthanide-doped core-shell nanoparticles as a multimodality platform for imaging and photodynamic therapy Chem. Commun. 54(68), 9525 (2018)

  10. 10.

    X. Chen, D. Peng, Q. Ju, and F. Wang, Photon upconversion in core-shell nanoparticles Chem. Soc. Rev. 44(6), 1318 (2015)

  11. 11.

    L. Tian, Y. Shang, S. Hao, Q. Han, T. Chen, W. Lv, and C. Yang, Constructing a “native” oxyfluoride layer on fluoride particles for enhanced upconversion luminescence Adv. Funct. Mater. 28(48), 1803946 (2018)

  12. 12.

    X. Tian, Z. Wu, Y. Jia, J. Chen, R. K. Zheng, Y. Zhang, and H. Luo, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5) TiO3 ceramic Appl. Phys. Lett. 102(4), 042907 (2013)

  13. 13.

    V. K. Tikhomirov, L. F. Chibotaru, D. Saurel, P. Gredin, M. Mortier, and V. V. Moshchalkov, Er3+-doped nanoparticles for optical detection of magnetic field Nano Lett. 9(2), 721 (2009)

  14. 14.

    F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, Temperature sensing using fluorescent nanothermometers ACS Nano 4(6), 3254 (2010)

  15. 15.

    Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, and J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation J. Phys. Chem. C 119(42), 24056 (2015)

  16. 16.

    C. F. Gainer, G. S. Joshua, C. R. De Silva, and M. Romanowski, Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation J. Mater. Chem. 21(46), 18530 (2011)

  17. 17.

    C. F. Gainer, G. S. Joshua, and M. Romanowski, Toward the use of two-color emission control in upconverting NaYF4: Er3+, Yb3+ nanoparticles for biomedical imaging Nanoscale 8231, 823101 (2012)

  18. 18.

    S. Zhang, S. Xu, J. Ding, C. Lu, T. Jia, J. Qiu, and Z. Sun, Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse Appl. Phys. Lett. 104(1), 014101 (2014)

  19. 19.

    P. Liu, W. Cheng, Y. Yao, C. Xu, Y. Zheng, L. Deng, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields Laser Phys. Lett. 14(11), 115301 (2017)

  20. 20.

    E. De la Rosa, L. A. Diaz-Torres, P. Salas, and R. A. Rodriguez, Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor Opt. Mater. 27(7), 1320 (2005)

  21. 21.

    T. P. Tang, C. M. Lee, and F. C. Yen, The photoluminescence of SrAl2O4: Sm phosphors Ceram. Int. 32(6), 665 (2006)

  22. 22.

    G. B. Nair and S. J. Dhoble, Photoluminescence properties of Eu3+/Sm3+ activated CaZr4(PO4)6 phosphors J. Fluoresc. 26(5), 1865 (2016)

  23. 23.

    D. T. Marzahl, P. W. Metz, C. Kränkel, and G. Huber, Spectroscopy and laser operation of Sm3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19) Opt. Express 23(16), 21118 (2015)

  24. 24.

    J. Liu and Y. K. Vohra, Sm:YAG optical pressure sensor to 180 GPa: Calibration and structural disorder Appl. Phys. Lett. 64(25), 3386 (1994)

  25. 25.

    M. Dyrba, P. T. Miclea, and S. Schweizer, Spectral down-conversion in Sm-doped borate glasses for photovoltaic applications Proc. SPIE 7725, 77251D (2010)

  26. 26.

    J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+J. Lumin. 117(1), 1 (2006)

  27. 27.

    D. Meshulach and Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser pulse Nature 396(6708), 239 (1998)

  28. 28.

    D. Meshulach and Y. Silberberg, Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses Phys. Rev. A 60(2), 1287 (1999)

  29. 29.

    L. Wu, M. Ji, H. Wang, Y. Kong, and Y. Zhang, Site occupancy and photoluminescence of Sm3+ in KSr4(BO3)3: Sm3+ phosphors Opt. Mater. Express 4(8), 1535 (2014)

  30. 30.

    L. Z. Deng, Y. Yao, L. Deng, H. Jia, Y. Zheng, C. Xu, J. Li, T. Jia, J. Qiu, Z. Sun, and S. Zhang, Tuning upconversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control Front. Phys. 14(1), 13602 (2019)

  31. 31.

    W. T. Carnall, P. R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions (I): Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+J. Chem. Phys. 49(10), 4424 (1968)

  32. 32.

    S. Q. Mawlud, M. M. Ameen, M. R. Sahar, Z. A. S. Mahraz, and K. F. Ahmed, Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd-Ofelt analysis Opt. Mater. 69, 318 (2017)

  33. 33.

    A. Gandman, L. Chuntonov, L. Rybak, and Z. Amitay, Coherent phase control of resonance-mediated (2 + 1) three-photon absorption Phys. Rev. A 75(3), 031401 (2007)

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 91850202, 11774094, 11727810, 11804097, and 61720106009), the Science and Technology Commission of Shanghai Municipality (Grant No. 17ZR146900), the China Postdoctoral Science Foundation (Grant No. 2018M641958), and ECNU Academic Innovation Promotion Program for Excellent Doctoral Students (Grant No. YBNLTS2019-011).

Author information

Correspondence to Lian-Zhong Deng or Shi-An Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Deng, L., Zheng, Y. et al. Optimal spectral phase control of femtosecond laser-induced up-conversion luminescence in Sm3+:NaYF4 glass. Front. Phys. 15, 22603 (2020). https://doi.org/10.1007/s11467-019-0947-7

Download citation

Keywords

  • up-conversion luminescence
  • rare earth ions
  • quantum control
  • femtosecond laser
  • spectral phase