Frontiers of Physics

, 14:61602 | Cite as

Recovering information in probabilistic quantum teleportation

  • Luis Roa
  • Andrea Espinoza
  • Ariana Muñoz
  • María L. Ladrón de GuevaraEmail author
Research Article


In this paper we redesign the probabilistic teleportation scheme considered in Phys. Rev. A61, 034301 (2000) by Wan-Li Li et al., where the optimal state extraction protocol complements the basic teleportation process with a partially entangled pure state channel, in order to transfer the unknown state with fidelity 1. Unlike that scheme, where the information of the unknown state is lost if the state extraction fails, our proposal teleports exactly and optimally an unknown state, and allows to recover faithfully that state when the process has not succeeded. In order to study the resilience of the scheme, we apply it to the teleportation problem through a quantum channel in a mixed state with pure dephasing. We find that a successful process transfers an unfaithful state, namely, the outcome state acquires the decoherence of the channel, but the unknown state is recovered by the sender with fidelity 1 if the teleportation fails. In addition, in this case, the fidelity of the teleported state has quantum features only if the channel has an amount of entanglement different from zero.


quantum information teleportation 



This work was supported by FONDECyT under grant No. 1161631. A. M. thanks to CONICyT.


  1. 1.
    C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    N. Gisin, Quantum-teleportation experiments turn 20, Nature 552(7683), 42 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    R. Lo Franco and G. Compagno, Indistinguishability of elementary systems as a resource for quantum information processing, Phys. Rev. Lett. 120(24), 240403 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    J. G. Ren, P. Xu, H. L. Yong, L. Zhang, Sh. K. Liao, et al., Ground-to-satellite quantum teleportation, Nature 549(7670), 70 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, Deterministic quantum teleportation between distant atomic objects, Nat. Phys. 9(7), 400 (2013)CrossRefGoogle Scholar
  9. 9.
    Sh. Takeda, T. Mizuta, M. Fuwa, P. van Loock, and A. Furusawa, Deterministic quantum teleportation of photonic quantum bits by a hybrid technique, Nature 500(7462), 315 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Deterministic teleportation of a quantum gate between two logical qubits, Nature 561, 368 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13, 130320 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Brassard, S. L. Braunstein, and R. Cleve, Teleportation as a quantum computation, Physica D 120(1–2), 43 (1998)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402(6760), 390 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9, 646 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Q. Gao, Z. C. Zhang, and B. Sheng, Multi-hop teleportation in a quantum network based on mesh topology, Front. Phys. 13, 130314 (2018)CrossRefGoogle Scholar
  17. 17.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. A 60(3), 1888 (1999)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    L. Roa, R. Gómez, A. Muñoz, G. Rai, and M. Hecker, Entanglement thresholds for displaying the quantum nature of teleportation, Ann. Phys. 371, 228 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Roa, M. L. Ladrón de Guevara, M. Soto-Moscoso, and P. Catalan, The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation, J. Phys. A: Math. Theor. 51(21), 215301 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Mor and P. Horodecki, Teleportation via generalized measurements, and conclusive teleportation, arXiv: quant-ph/9906039 (1999)Google Scholar
  22. 22.
    S. Bandyopadhyay, Teleportation and secret sharing with pure entangled states, Phys. Rev. A 62(1), 012308 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61, 034301 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    P. Agrawal and A. K. Pati, Probabilistic quantum teleportation, Phys. Lett. A 305(1–2), 12 (2002)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    L. Roa, A. Delgado, and I. Fuentes-Guridi, Optimal conclusive teleportation of quantum states, Phys. Rev. A 68(2), 022310 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    L. Roa and C. Groiseau, Probabilistic teleportation without loss of information, Phys. Rev. A 91(1), 012344 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Roa, A. Muñoz, A. Hutin, and M. Hecker, Threefold entanglement matching, Quantum Inform. Process. 14(11), 4113 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    T. Rashvand, Teleporting an unknown quantum state with unit fidelity and unit probability via a non-maximally entangled channel and an auxiliary system, Quantum Inform. Process. 15(11), 4839 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11, 110303 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Y. Hsu, Optimal information extraction in probabilistic teleportation, Phys. Rev. A 66(1), 012308 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)CrossRefGoogle Scholar
  32. 32.
    J. L. Skinner and D. Hsu, Pure dephasing of a two-level system, J. Phys. Chem. 90(21), 4931 (1986)CrossRefGoogle Scholar
  33. 33.
    F. K. Wilhelm, Quantum oscillations in the spin-boson model, reduced visibility from non-Markovian effects and initial entanglement, New J. Phys. 10(11), 115011 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    B. Bellomo, G. Compagno, A. D’Arrigo, G. Falci, R. Lo Franco, and E. Paladino, Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise, Phys. Rev. A 81(6), 062309 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    L. Mazzola, B. Bellomo, R. Lo Franco, and G. Compagno, Connection among entanglement, mixedness, and nonlocality in a dynamical context, Phys. Rev. A 81(5), 052116 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    B. Aaronson, R. Lo Franco, and G. Adesso, Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence, Phys. Rev. A 88(1), 012120 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    S. Hill and W. K. Wootters, Entanglement of a pair of quantum bits, Phys. Rev. Lett. 78(26), 5022 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    A. Uhlmann, The “transition probability” in the state space of a *-algebra, Rep. Math. Phys. 9(2), 273 (1976)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41(12), 2315 (1994)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luis Roa
    • 1
  • Andrea Espinoza
    • 2
  • Ariana Muñoz
    • 1
    • 3
  • María L. Ladrón de Guevara
    • 2
    Email author
  1. 1.Departamento de FísicaUniversidad de ConceptiónConceptiónChile
  2. 2.Departamento de FísicaUniversidad Católica del NorteAntofagastaChile
  3. 3.Facultad de IngenieríaUniversidad Autónoma de ChileTalcaChile

Personalised recommendations