Frontiers of Physics

, 14:62601 | Cite as

Photonic spin Hall effect in PT symmetric metamaterials

  • Yang-Yang FuEmail author
  • Yue Fei
  • Da-Xing Dong
  • You-Wen LiuEmail author
Research Article


We proposed and demonstrated that PT symmetric metamaterials could be used to achieve enhanced spin Hall effect (SHE) of light. We find that when laser mode is excited in PT symmetric system, the enhanced SHE could be obtained in both transmitted and reflected beams. In addition, as exceptional points (EPs) of PT symmetric system can happen for both p- and s-polarizations, the enhanced SHE of reflected light can function for both horizontally and vertically polarized incident beams. Particularly, these EPs can lead to unidirectional reflectionlessness, asymmetric SHE with maximum contrast ratio of 48 is obtained by launching light beams near EPs. Our work opens up a new path to obtain enhanced transverse displacement for both reflected and transmitted light and enables more opportunities in manipulating photonic SHE.


PT symmetry exceptional points laser mode spin Hall effect 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904169 and 61675095) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20190383).

References and notes

  1. 1.
    M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93(8), 083901 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Qin, Y. Li, H. Y. He, and Q. H. Gong, Measurement of spin Hall effect of reflected light, Opt. Lett. 34(17), 2551 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, Observation of spin Hall effect in photon tunneling via weak measurements, Sci. Rep. 4(1), 7388 (2015)CrossRefGoogle Scholar
  5. 5.
    O. Takayama and G. Puentes, Enhanced spin Hall effect of light by transmission in a polymer, Opt. Lett. 43(6), 1343 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    K. Y. Bliokh and A. Aiello, Goos-Hänchen and Imbert-Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection, Phys. Rev. A 84(4), 043806 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    L. Kong, X. Wang, S. Li, Y. Li, J. Chen, B. Gu, and H. Wang, Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle, Appl. Phys. Lett. 100(7), 071109 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Pan, Y. Li, J. Ren, B. Wang, Y. Xiao, H. Yang, and Q. Gong, Impact of in-plane spread of wave vectors on spin Hall effect of light around Brewster’s angle, Appl. Phys. Lett. 103(7), 071106 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    T. Tang, C. Li, and L. Luo, Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide, Sci. Rep. 6(1), 30762 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    O. Takayama, J. Sukham, R. Malureanu, A. V. Lavrinenko, and G. Puentes, Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths, Opt. Lett. 43(19), 4602 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    H. Wang and X. Zhang, Unusual spin Hall effect of a light beam in chiral metamaterials, Phys. Rev. A 83(5), 053820 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Fu, Y. Xu, and H. Chen, Additional modes in a waveguide system of zero-index-metamaterials with defects, Sci. Rep. 4(1), 6428 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Fu, Y. Xu, and H. Chen, Inhomogeneous field in cavities of zero index metamaterials, Sci. Rep. 5(1), 11217 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    W. Zhu and W. She, Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab, Opt. Lett. 40(13), 2961 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    T. Tang, J. Li, L. Luo, P. Sun, and Y. Zhang, Loss enhanced spin Hall effect of transmitted light through anisotropic epsilon-and mu-near-zero metamaterial slab, Opt. Express 25(3), 2347 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    T. Tang, J. Li, Y. Zhang, C. Li, and L. Luo, Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial, Opt. Express 24(24), 28113 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    W. Zhu, J. Yu, H. Guan, H. Lu, J. Tang, Y. Luo, and Z. Chen, Large spatial and angular spin splitting in a thin anisotropic e-near-zero metamaterial, Opt. Express 25(5), 5196 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity-time symmetry, Nat. Photonics 11(12), 752 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nat. Mater. 12(2), 108 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    M. Tang, X. Zhou, H. Luo, and S. Wen, Spin Hall effect of a light beam in anisotropic metamaterials, Chin. Phys. B 21(12), 124201 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Cao, Y. Fu, Q. Zhou, Y. Xu, L. Gao, and H. Chen, Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures, Opt. Express 27(6), 7857 (2019)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Fu, Y. Xu, and H. Chen, Zero index metamaterials with PT symmetry in a waveguide system, Opt. Express 24(2), 1648 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Fu, X. Zhang, Y. Xu, and H. Chen, Design of zero index metamaterials with PT symmetry using epsilon-near-zero media with defects, J. Appl. Phys. 121(9), 094503 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    X. Zhou and X. Ling, Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting, Opt. Express 24(3), 3025 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    X. Zhou, X. Lin, Z. Xiao, T. Low, A. Alù, B. Zhang, and H. Sun, Controlling photonic spin Hall effect via exceptional points, Phys. Rev. B 100(1), 013813 (2019)CrossRefGoogle Scholar
  33. 33.
    R. Bai, C. Zhang, X. Gu, X. Jin, Y. Zhao, and Y. Lee, Switching the unidirectional reflectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling, Sci. Rep. 7(1), 10742 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Z. Wong, Y. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, and X. Zhang, Lasing and anti-lasing in a single cavity, Nat. Photonics 10(12), 796 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    L. Ge and L. Feng, Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT-symmetric periodic structure, Phys. Rev. A 95(1), 013813 (2017)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Y. Xu, Y. Fu, and H. Chen, Electromagnetic wave propagations in conjugate metamaterials, Opt. Express 25(5), 4952 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Fu, Y. Cao, S. A. Cummer, Y. Xu, and H. Chen, Coherent perfect absorber and laser modes in purely imaginary metamaterials, Phys. Rev. A 96(4), 043838 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss, Phys. Rev. A 94(6), 063841 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Fu, Y. Xu, and H. Chen, Negative refraction based on purely imaginary metamaterials, Front. Phys. 13(4), 134206 (2018)CrossRefGoogle Scholar
  40. 40.
    Y. Fu, Y. Xu, H. Chen, and S. A. Cummer, Coherent perfect absorption and laser modes in a cylindrical structure of conjugate metamaterials, New J. Phys. 20, 013015 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations