Advertisement

Frontiers of Physics

, 14:63604 | Cite as

Thermally activated phase transitions in Fe-Ni core-shell nanoparticles

  • Jin-Bo Wang
  • Rao HuangEmail author
  • Yu-Hua WenEmail author
Research Article
  • 9 Downloads

Abstract

Fe-Ni core-shell nanoparticles are versatile functional materials, and their thermal stabilities are crucial for their performances in operating conditions. In this study, the thermodynamic behaviors of Fe-Ni core-shell nanoparticles are examined under continuous heating. The solid-solid phase transition from body centered cubic (bcc) to face centered cubic (fcc) in the Fe core is identified. The transition is accompanied with the generation of stacking faults around the core-shell interface, which notably lowers the melting points of the Fe-Ni core-shell nanoparticles and causes even worse thermal stability compared with Ni ones. Moreover, the temperature of the structural transformation is shown to be tuned by modifying the Ni shell thickness. Finally, the stress distributions of the core and the shell are also explored. The relevant results could be helpful for the design, preparation, and utilization of Fe-based nanomaterials.

Keywords

core-shell metallic nanoparticle phase transition molecular dynamics 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474234 and 51871189).

References

  1. 1.
    V. Amendola, P. Riello, and M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents, J. Phys. Chem. C 115(12), 5140 (2011)CrossRefGoogle Scholar
  2. 2.
    D. L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small 1(5), 482 (2005)CrossRefGoogle Scholar
  3. 3.
    Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40(7), 4167 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. X. Chen, S. P. Chen, Z. Y. Zhou, N. Tian, Y. X. Jiang, S. G. Sun, Y. Ding, and Z. L. Wang, Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry, J. Am. Chem. Soc. 131(31), 10860 (2009)CrossRefGoogle Scholar
  5. 5.
    L. M. Lacroix, N. F. Huls, D. Ho, X. L. Sun, K. Cheng, and S. H. Sun, Stable single-crystalline body centered cubic Fe nanoparticles, Nano Lett. 11(4), 1641 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26(18), 3995 (2005)CrossRefGoogle Scholar
  7. 7.
    X. Zhao, W. Liu, Z. Q. Cai, B. Han, T. W. Qian, and D. Y. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100, 245 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Phenrat, D. Schoenfelder, T. L. Kirschling, R. D. Tilton, and G. V. Lowry, Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene, Environ. Sci. Pollut. Res. Int. 25(8), 7157 (2018)CrossRefGoogle Scholar
  9. 9.
    A. P. Douvalis, R. Zboril, A. B. Bourlinos, J. Tucek, S. Spyridi, and T. Bakas, A facile synthetic route toward air-stable magnetic nanoalloys with Fe-Ni/Fe-Co core and iron oxide shell, J. Nanopart. Res. 14(9), 1130 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S. F. Moustafa and W. M. Daoush, Synthesis of nano-sized Fe-Ni powder by chemical process for magnetic applications, J. Mater. Process. Technol. 181(1–3), 59 (2007)CrossRefGoogle Scholar
  11. 11.
    P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys. 36(13), R182 (2003)CrossRefGoogle Scholar
  12. 12.
    S. K. Sanjay, A. K. Singh, K. Aranishi, and Q. Xu, Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc. 133(49), 19638 (2011)CrossRefGoogle Scholar
  13. 13.
    S. A. Theofanidis, V. V. Galvita, H. Poelman, and G. B. Marin, Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe, ACS Catal. 5(5), 3028 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. H. Tee, L. Bachas, and D. Bhattacharyya, Degradation of trichloroethylene by iron-based bimetallic nanoparticles, J. Phys. Chem. C 113(22), 9454 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Rivero-Huguet and W. D. Marshall, Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles, J. Hazard. Mater. 169(1–3), 1081 (2009)CrossRefGoogle Scholar
  16. 16.
    G. Bonny, R. C. Pasianot, and L. Malerba, Fe-Ni many-body potential for metallurgical applications, Model. Simul. Mater. Sci. Eng. 17(2), 025010 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    K. Vörtler, N. Juslin, G. Bonny, L. Malerba, and K. Nordlund, The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys, J. Phys.: Condens. Matter 23(35), 355007 (2011)Google Scholar
  18. 18.
    N. Anento, A. Serra, and Y. Osetsky, Effect of nickel on point defects diffusion in Fe-Ni alloys, Acta Mater. 132, 367 (2017)CrossRefGoogle Scholar
  19. 19.
    C. G. Zhang, K. Ma, N. Q. Zhao, and Z. H. Yuan, A core-shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions, Cryst. Growth Des. 18(12), 7470 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Qi, T. Cagin, W. L. Johnson, and W. A. III Goddard, Melting and crystallization in Ni nanoclusters: The mesoscale regime, J. Chem. Phys. 115(1), 385 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Thermal stability of platinum nanowires: a comparison study between single-crystalline and twinned structures, J. Mater. Chem. 21(47), 18998 (2011)CrossRefGoogle Scholar
  22. 22.
    Q. S. Mei and K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci. 52(8), 1175 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Shibuta and T. Suzuki, Melting and nucleation of iron nanoparticles: A molecular dynamics study, Chem. Phys. Lett. 445(4–6), 265 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Structure and stability of platinum nanocrystals: From low-index to high-index facets, J. Mater. Chem. 21(31), 11578 (2011)CrossRefGoogle Scholar
  25. 25.
    C. Kittel, Introduction to Solid State Physics, John Wiley & Sons Press, 1956Google Scholar
  26. 26.
    R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Pt-Pd bimetallic catalysts: Structural and thermal stabilities of core-shell and alloyed nanoparticles, J. Phys. Chem. C 116(15), 8664 (2012)CrossRefGoogle Scholar
  27. 27.
    J. D. Honeycutt and H. C. Andersen, Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phys. Chem. 91(19), 4950 (1987)CrossRefGoogle Scholar
  28. 28.
    L. Sandoval, H. M Urbassek, and P. Entel, The Bain versus Nishiyama-Wassermann path in the martensitic transformation of Fe, New J. Phys. 11(10), 103027 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    R. Huang, S. F. Shao, X. M. Zeng, and Y. H. Wen, Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: A perspective from molecular dynamics simulations, Sci. Rep. 4(1), 7051 (2015)CrossRefGoogle Scholar
  30. 30.
    R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Atomicscale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles, Phys. Chem. Chem. Phys. 18(14), 9847 (2016)CrossRefGoogle Scholar
  31. 31.
    C. Mottet, G. Rossi, F. Baletto, and R. Ferrando, Single impurity effect on the melting of nanoclusters, Phys. Rev. Lett. 95(3), 035501 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Structural defects in amorphous solids Statistical analysis of a computer model, Philos. Mag. A 44(4), 847 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    Y. T. Cheng, and M. W. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles, J. Appl. Phys. 104(8), 083521 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    V. I. Levitas and K. Samani, Size and mechanics effects in surface-induced melting of nanoparticles, Nat. Commun. 2(1), 284 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    H. Hasegawa and D. G. Pettifor, Microscopic theory of the temperature-pressure phase diagram of iron, Phys. Rev. Lett. 50(2), 130 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Jiujiang Research Institute and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient DevicesXiamen UniversityXiamenChina

Personalised recommendations