Advertisement

Frontiers of Physics

, 14:61301 | Cite as

Topological quantum walks: Theory and experiments

  • Jizhou WuEmail author
  • Wei-Wei ZhangEmail author
  • Barry C. SandersEmail author
View & Perspective
  • 35 Downloads

Notes

Acknowledgments

B. C. S. and J. W. are supported by the National Natural Science Foundation of China (NSFC) with Grant No. 11675164. W. Z. is supported by the Australian Research Council (ARC) via the Centre of Excellence in Engineered Quantum Systems (EQuS) project number CE110001013, and USyd-SJTU Partnership Collaboration Awards.

References

  1. 1.
    C. H. Li, O. M. J. van’t Erve, J. T. Robinson, Y. Liu, L. Li, and B. T. Jonker, Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3, Nat. Nanotechnol. 9(3), 218 (2014)ADSGoogle Scholar
  2. 2.
    Y. Ando, T. Hamasaki, T. Kurokawa, K. Ichiba, F. Yang, M. Novak, S. Sasaki, K. Segawa, Y. Ando, and M. Shiraislii, Electrical detection of the spin polarization due to charge flow in the surface state of the topological insulator Bi1.5Sb0.5Te1.7Se1 .3, Nano Lett. 14(11), 6226 (2014)ADSGoogle Scholar
  3. 3.
    D. C. Mahendra, R. Grassi, J.-Y. Chen, M. Jamali, D. R. Hickey, D. Zhang, Z. Zhao, H. Li, P. Quarterman, Y. Lv, M. Li, A. Manchon, K. A. Mkhoyan, T. Low, and J.-P. Wang, Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe1-x; films, Nat. Mater. 17, 800 (2018)ADSGoogle Scholar
  4. 4.
    A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303(1), 2 (2003)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler, Exploring topological phases with quantum walks, Phys. Rev. A 82(3), 033429 (2010)ADSGoogle Scholar
  6. 6.
    T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B 82(23), 235114 (2010)ADSGoogle Scholar
  7. 7.
    T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Observation of topologically protected bound states in photonic quantum walks, Nat. Commun. 3(1), 882 (2012)ADSGoogle Scholar
  8. 8.
    J. K. Asboth, Symmetries, topological phases, and bound states in the one-dimensional quantum walk, Phys. Rev. B 86, 195414 (2012)ADSGoogle Scholar
  9. 9.
    M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X 3(3), 031005 (2013)Google Scholar
  10. 10.
    W. W. Zhang, B. C. Sanders, S. Apers, S. K. Goyal, and D. L. Feder, Detecting topological transitions in two dimensions by Hamiltonian evolution, Phys. Rev. Lett. 119(19), 197401 (2017)ADSGoogle Scholar
  11. 11.
    L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Observation of topological edge states in parity-time-symmetric quantum walks, Nat. Phys. 13(11), 1117 (2017)Google Scholar
  12. 12.
    C. Chen, X. Ding, J. Qin, Y. He, Y. H. Luo, M. C. Chen, C. Liu, X. L. Wang, W. J. Zhang, H. Li, L. X. You, Z. Wang, D. W. Wang, B. C. Sanders, C. Y. Lu, and J. W. Pan, Observation of topologically protected edge states in a photonic two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100502 (2018)ADSGoogle Scholar
  13. 13.
    W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Uncover topology by quantum quench dynamics, Phys. Rev. Lett. 121(25), 250403 (2018)ADSGoogle Scholar
  14. 14.
    M. Sajid, J. K. Asboth, D. Meschede, R. F. Werner, and A. Alberti, Creating anomalous Floquet Chern insulators with magnetic quantum walks, Phys. Rev. B 99(21), 214303 (2019)ADSGoogle Scholar
  15. 15.
    J. Kempe, Quantum random walks: An introductory overview, Contemp. Phys. 44(4), 307 (2003)ADSGoogle Scholar
  16. 16.
    Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)ADSGoogle Scholar
  17. 17.
    D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 50–59zbMATHGoogle Scholar
  18. 18.
    A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, in: Proc. 33rd Annual ACM Symposium on Theory of Computing, ACM, New York, 2001, pp 37–49Google Scholar
  19. 19.
    T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, Quantum walks in higher dimensions, J. Phys. A 35(12), 2745 (2002)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, in: Proc. 35th Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp 59–68Google Scholar
  21. 21.
    A. Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Corn-put. 37(1), 210 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, SIAM J. Comput. 37(2), 413 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamiltonian NAND tree, Theory Comput. 4(1), 169 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    B. L. Douglas, and J. Wang, A classical approach to the graph isomorphism problem using quantum walks, J. Phys. A 41(7), 075303 (2008)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    A. M. Childs, Universal computation by quantum walk, Phys. Rev. Lett. 102(18), 180501 (2009)ADSMathSciNetGoogle Scholar
  26. 26.
    S. Godoy and S. Fujita, A quantum random-walk model for tunneling diffusion in a 1D lattice: A quantum correction to Fick’s law, J. Chem. Phys. 97(7), 5148 (1992)ADSGoogle Scholar
  27. 27.
    O. Mülken and A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks, Phys. Rep. 502(2), 37 (2011)ADSMathSciNetGoogle Scholar
  28. 28.
    G. Di Molfetta, M. Brachet, and F. Debbasch, Quantum walks as massless Dirac fermions in curved space-time, Phys. Rev. A 88(4), 042301 (2013)ADSGoogle Scholar
  29. 29.
    W. W. Zhang, S. K. Goyal, F. Gao, B. C. Sanders, and C. Simon, Creating cat states in one-dimensional quantum walks using delocalized initial states, New J. Phys. 18(9), 093025 (2016)ADSGoogle Scholar
  30. 30.
    H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, and T. Schaetz, Quantum walk of a trapped ion in phase space, Phys. Rev. Lett. 103(9), 090504 (2009)ADSGoogle Scholar
  31. 31.
    F. Zahringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, Realization of a quantum walk with one and two trapped ions, Phys. Rev. Lett. 104, 100503 (2010)ADSGoogle Scholar
  32. 32.
    E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin, N. Y. Yao, and I. Siddiqi, Observing topological invariants using quantum walks in superconducting circuits, Phys. Rev. X 7(3), 031023 (2017)Google Scholar
  33. 33.
    Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)ADSGoogle Scholar
  34. 34.
    J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, Experimental implementation of the quantum random-walk algorithm, Phys. Rev. A 67(4), 042316 (2003)ADSGoogle Scholar
  35. 35.
    C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor, Phys. Rev. A 72(6), 062317 (2005)ADSGoogle Scholar
  36. 36.
    M. Karski, L. Forster, J.M. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, Quantum walk in position space with single optically trapped atoms, Science 325(5937), 174 (2009)ADSGoogle Scholar
  37. 37.
    S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, and G. S. Summy, Quantum walk in momentum space with a Bose-Einstein condensate, Phys. Rev. Lett. 121(7), 070402 (2018)ADSGoogle Scholar
  38. 38.
    B. Do, M. L. Stohler, S. Balasubramanian, D. S. Elliott, C. Eash, E. Fischbach, M. A. Fischbach, A. Mills, and B. Zwickl, Experimental realization of a quantum quincunx by use of linear optical elements, J. Opt. Soc. Am. B 22(2), 499 (2005)ADSMathSciNetGoogle Scholar
  39. 39.
    F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slus-sarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santam-ato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)ADSGoogle Scholar
  40. 40.
    H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Moran-dotti, and Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices, Phys. Rev. Lett. 100(17), 170506 (2008)ADSGoogle Scholar
  41. 41.
    H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, Experimental two-dimensional quantum walk on a photonic chip, Sci. Adv. 4, eaat3174 (2018)ADSGoogle Scholar
  42. 42.
    S. E. Venegas-Andraca, Quantum walks: A comprehensive review, Quantum Inform. Process. 11(5), 1015 (2012)MathSciNetzbMATHGoogle Scholar
  43. 43.
    E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58(2), 915 (1998)ADSMathSciNetGoogle Scholar
  44. 44.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)ADSGoogle Scholar
  45. 45.
    A. T. Schmitz and W. A. Schwalm, Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk, Phys. Lett. A 380(11–12), 1125 (2016)ADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)ADSGoogle Scholar
  48. 48.
    S. S. Chern, Characteristic classes of Hermitian manifolds, Ann. Math. 47(1), 85 (1946)MathSciNetzbMATHGoogle Scholar
  49. 49.
    S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99(1), 48 (1974)MathSciNetzbMATHGoogle Scholar
  50. 50.
    F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Statistical moments of quantum-walk dynamics reveal topological quantum transitions, Nat. Com-mun. 7(1), 11439 (2016)ADSGoogle Scholar
  51. 51.
    F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons, Nat. Commun. 8(1), 15516 (2017)ADSGoogle Scholar
  52. 52.
    Y. Wang, Y. H. Lu, F. Mei, J. Gao, Z. M. Li, H. Tang, S. L. Zhu, S. Jia, and X. M. Jin, Direct observation of topology from single-photon dynamics, Phys. Rev. Lett. 122(19), 193903 (2019)ADSGoogle Scholar
  53. 53.
    T. Groh, S. Brakhane, W. Alt, D. Meschede, J. K. Asboth, and A. Alberti, Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A 94(1), 013620 (2016)ADSGoogle Scholar
  54. 54.
    S. Mugel, A. Celi, P. Massignan, J. K. Asboth, M. Lewenstein, and C. Lobo, Topological bound states of a quantum walk with cold atoms, Phys. Rev. A 94(2), 023631 (2016)ADSGoogle Scholar
  55. 55.
    T. Nitsche, T. Geib, C. Stahl, L. Lorz, C. Cedzich, S. Barkhofen, R. F. Werner, and C. Silberhorn, Eigenvalue measurement of topologically protected edge states in split-step quantum walks, New J. Phys. 21(4), 043031 (2019)ADSMathSciNetGoogle Scholar
  56. 56.
    W. W. Zhang, S. K. Goyal, C. Simon, and B. C. Sanders, Decomposition of split-step quantum walks for simulating Majorana modes and edge states, Phys. Rev. A 95(5), 052351 (2017)ADSGoogle Scholar
  57. 57.
    S. Yao, Z. Yan, and Z. Wang, Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects, Phys. Rev. B 96(19), 195303 (2017)ADSGoogle Scholar
  58. 58.
    B. Tarasinski, J. K. Asboth, and J. P. Dahlhaus, Scattering theory of topological phases in discrete-time quantum walks, Phys. Rev. A 89(4), 042327 (2014)ADSGoogle Scholar
  59. 59.
    S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gabris, I. Jex, and C. Silberhorn, Measuring topological invariants in disordered discrete-time quantum walks, Phys. Rev. A 96(3), 033846 (2017)ADSGoogle Scholar
  60. 60.
    J. K. Asboth and H. Obuse, Bulk-boundary correspondence for chiral symmetric quantum walks, Phys. Rev. B 88, 121406(R) (2013)Google Scholar
  61. 61.
    J. K. Asboth, B. Tarasinski, and P. Delplace, Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems, Phys. Rev. B 90, 125143 (2014)ADSGoogle Scholar
  62. 62.
    H. Obuse, J. K. Asboth, Y. Nishimura, and N. Kawakami, Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk, Phys. Rev. B 92(4), 045424 (2015)ADSGoogle Scholar
  63. 63.
    C. Cedzich, F. A. Grünbaum, C. Stahl, L. Velazquez, A. H. Werner, and R. F. Werner, Bulk-edge correspondence of one-dimensional quantum walks, J. Phys. A 49(21), 21LT01 (2016)MathSciNetzbMATHGoogle Scholar
  64. 64.
    C. Cedzich, T. Geib, F. A. Griinbaum, C. Stahl, L. Velazquez, A. H. Werner, and R. F. Werner, The topological classification of one-dimensional symmetric quantum walks, Annates Henri Poincare 19, 325 (2018)ADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    C. Cedzich, T. Geib, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner, Complete homotopy invariants for translation invariant symmetric quantum walks on a chain, Quantum 2, 95 (2018)Google Scholar
  66. 66.
    C. Cedzich, and T. Geib, F. A. Grünbaum, L. Velazquez, A. H. Werner, and R. F. Werner, Quantum walks: Schur functions meet symmetry protected topological phases, arXiv: 1903.07494 [math-ph] (2019)Google Scholar
  67. 67.
    J. K. Asboth and J. M. Edge, Edge-state-enhanced transport in a two-dimensional quantum walk, Phys. Rev. A 91, 022324 (2015)ADSGoogle Scholar
  68. 68.
    B. Wang, T. Chen, and X. Zhang, Experimental observation of topologically protected bound states with vanishing Chern numbers in a two-dimensional quantum walk, Phys. Rev. Lett. 121(10), 100501 (2018)ADSGoogle Scholar
  69. 69.
    X. Y. Xu, Q. Q. Wang, W. W. Pan, K. Sun, J. S. Xu, G. Chen, J. S. Tang, M. Gong, Y. J. Han, C. F. Li, and G. C. Guo, Measuring the winding number in a large-scale chiral quantum walk, Phys. Rev. Lett. 120(26), 260501 (2018)ADSGoogle Scholar
  70. 70.
    V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao, Direct probe of topological invariants using Bloch oscillating quantum walks, Phys. Rev. Lett. 118(13), 130501 (2017)ADSMathSciNetGoogle Scholar
  71. 71.
    A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)ADSGoogle Scholar
  72. 72.
    L. Zhang, L. Zhang, S. Niu, and X. J. Liu, Dynamical classification of topological quantum phases, Sci. Bull. 63(21), 1385 (2018)Google Scholar
  73. 73.
    C. M. Bender, and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)ADSMathSciNetzbMATHGoogle Scholar
  74. 74.
    K. Mochizuki, D. Kim, and H. Obuse, Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss, Phys. Rev. A 93(6), 062116 (2016)ADSGoogle Scholar
  75. 75.
    K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, B. C. Sanders, W. Yi, and P. Xue, Observation of emergent momentum-time skyrmions in parity-time-symmetric non-unitary quench dynamics, Nat. Commun. 10(1), 2293 (2019)ADSGoogle Scholar
  76. 76.
    Y. Ming, C.T. Lin, S. D. Bartlett, and W. W. Zhang, Quantum topology identification with deep neural networks and quantum walks, arXiv: 1811.12630 [quant-ph] (2018)Google Scholar
  77. 77.
    B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Flaschner, C. Becker, K. Sengstock, and C. Weiten-berg, Identifying quantum phase transitions using artificial neural networks on experimental data, Nat. Phys. (2019), DOI: 10.1038/s41567-019-0554-0Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Branch, National Laboratory for Physical Sciences at MicroscaleUniversity of Science and Technology of ChinaShanghaiChina
  2. 2.CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Centre for Engineered Quantum Systems, School of PhysicsThe University of SydneySydneyAustralia
  4. 4.Institute for Quantum Science and TechnologyUniversity of CalgaryCalgaryCanada

Personalised recommendations