Frontiers of Physics

, 14:42501 | Cite as

Transformation devices with optical nihility media and reduced realizations

  • Lin XuEmail author
  • Qian-Nan Wu
  • Yang-Yang Zhou
  • Huan-Yang ChenEmail author
Research article


Starting from optical nihility media (ONM), we design several intriguing devices with transformation optics method in two dimensions, such as a wave splitter, a concave lens, a field rotator, a concentrator, and an invisibility cloak. Though the extreme anisotropic property of ONM hinders the fabrication of these devices. We demonstrate that those devices could be effectively realized by simplified materials with Fabry–Pérot resonances (FPs) at discrete frequencies. Moreover, we propose a reduced version of simplified materials with FPs to construct a concentrator and a rotator, which is feasible in experimental fabrications. The simulations of total scattering cross-sections confirm their functionalities.


transformation optics optical nihility media Fabry–Pérot resonances 



This work was supported by the National Natural Science Foundation of China for Excellent Young Scientists (Grant No. 61322504), the National Basic Research Program of China (Grant No. 2013CB035901), the Fundamental Research Funds for the Central Universities (Grant No. 20720170015), and the National Natural Science Foundation of China (Grants Nos. 51779224, 51579221, 51279180, 61705200, and 11874311).


  1. 1.
    U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    U. Leonhardt and T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8(10), 247 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    U. Leonhardt and T. Philbin, Geometry and Light: The Science of Invisibility, Dover Inc. Mineola, New York, 2010zbMATHGoogle Scholar
  5. 5.
    A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Ann. Phys. 354(7), 769 (1916)CrossRefzbMATHGoogle Scholar
  6. 6.
    H. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Kildishev and V. M. Shalaev, Transformation optics and metamaterials, Phys. Uspekhi 54(1), 53 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    B. Zhang, Electrodynamics of transformation-based invisibility cloaking, Light Sci. Appl. 1(10), e32 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    P. Kinsler and M. W. McCall, The futures of transformations and metamaterials, Photon. Nanostructures 15, 10 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    F. Sun, B. Zheng, H. Chen, W. Jiang, S. Guo, Y. Liu, Y. Ma, and S. He, Transformation Optics: From Classic Theory and Applications to its New Branches, Laser Photon. Rev. 11(6), 1700034 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M. McCall, J. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, Roadmap on transformation optics, J. Opt. 20(6), 063001 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    L. Xu and H. Chen, Conformal transformation optics, Nat. Photon. 9(1), 15 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, and D. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314(5801), 977 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J. Li and J. Pendry, Hiding under the carpet: A new strategy for cloaking, Phys. Rev. Lett. 101(20), 203901 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, Broadband ground-plane cloak, Science 323(5912), 366 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    H. F. Ma and T. J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials, Nat. Commun. 1(3), 21 (2010)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations, Photon. Nanostructures 6(1), 87 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M. M. Sadeghi, S. Li, L. Xu, B. Hou, and H. Chen, Transformation optics with Fabry–Pérot resonances, Sci. Rep. 5(1), 8680 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    P. Zhao, L. Xu, G. Cai, N. Liu, and H. Chen, A feasible approach to field concentrators of arbitrary shapes, Front. Phys. 13, 134205 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Y. Zhou, L. Xu, L. C. Zhang, J. Wu, Y. B. Li, and H. Y. Chen, Perfect invisibility concentrator with simplified material parameters, Front. Phys. 13(5), 134101 (2018)CrossRefGoogle Scholar
  21. 21.
    H. Chen and C. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90(24), 241105 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    H. Chen and C. Chan, Electromagnetic wave manipulation by layered systems using the transformation media concept, Phys. Rev. B 78(5), 054204 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett. 102(18), 183903 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Electromagnetic wormholes and virtual magnetic monopoles from metamaterials, Phys. Rev. Lett. 99(18), 183901 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D 43(11), 113001 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, and H. Chen, Concentrators for water waves, Phys. Rev. Lett. 121(10), 104501 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    H. Chen, J. Yang, J. Zi, and C. T. Chan, Transformation media for linear liquid surface waves, EPL 85(2), 24004 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M. Brun, S. Guenneau, and A. B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94(6), 061903 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    A. Norris and A. Shuvalov, Elastic cloaking theory, Wave Motion 48(6), 525 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    C. Fan, Y. Gao, and J. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. Chan, and Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions, Phys. Rev. Lett. 117(22), 223901 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    A. Lakhtakia, On perfect lenses and nihility, Int. J. Infrared Millim. Waves 23(3), 339 (2002)CrossRefGoogle Scholar
  37. 37.
    I. Liberal and N. Engheta, Near-zero refractive index photonics, Nat. Photon. 11(3), 149 (2017)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    W. Yan, M. Yan, and M. Qiu, Generalized nihility media from transformation optics, J. Opt. 13(2), 024005 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Q. He, S. Xiao, X. Li, and L. Zhou, Optic-null medium: Realization and applications, Opt. Express 21(23), 28948 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    F. Sun and S. He, Surface transformation with homogenous optic-null medium, Prog. Electromagnetics Res. 151, 169 (2015)CrossRefGoogle Scholar
  41. 41.
    J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292(5514), 77 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education & Institutes of Physical Science and Information TechnologyAnhui UniversityHefeiChina
  2. 2.School of ScienceNorth University of ChinaTaiyuanChina
  3. 3.Institute of Electromagnetics and Acoustics and Department of Electronic ScienceXiamen UniversityXiamenChina

Personalised recommendations