Frontiers of Physics

, 14:33402 | Cite as

Anomalous spatial shifts in interface electronic scattering

  • Zhi-Ming YuEmail author
  • Ying LiuEmail author
  • Shengyuan A. YangEmail author
Review Article
Part of the following topical collections:
  1. Special Topic: Recent Advances in Topological Materials


The anomalous spatial shifts at interface scattering, first studied in geometric optics, recently found their counterparts in the electronic context. It was shown that both longitudinal and transverse shifts, analogous to the Goos-Hänchen and Imbert-Fedorov effects in optics, can exist when electrons are scattered at a junction interface. More interestingly, the shifts are also discovered in the process of Andreev reflection at a normal/superconductor interface. Particularly, for the case with unconventional superconductors, it was discovered that the transverse shift can arise solely from the superconducting pair potential and exhibit characteristic features depending on the pairing. Here, we briefly review the recent works in this field, with an emphasis on the physical picture and theoretical understanding.


interface scattering transverse shift electron optics 



We thank Xinxing Zhou and D. L. Deng for valuable discussions. This work was supported by the Singapore Ministry of Education AcRF Tier 2 (MOE2017-T2-2-108).


  1. 1.
    F. Goos and H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436(7–8), 333 (1947)CrossRefGoogle Scholar
  2. 2.
    F. Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics, Berlin: Springer, 2010Google Scholar
  3. 3.
    F. Fedorov, K teorii polnogo otrazheniya, Dokl. Akad. Nauk SSSR 105, 465 (1955)MathSciNetGoogle Scholar
  4. 4.
    C. Imbert, Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam, Phys. Rev. D 5(4), 787 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    M. Onoda, S. Murakami, and N. Nagaosa, Hall effect of light, Phys. Rev. Lett. 93 (8), 083901 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett. 75 (7), 1348 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B 53(11), 7010 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59(23), 14915 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    S. Murakami, N. Nagaosa, and S. C. Zhang, Dissipationless quantum spin current at room temperature, Science 301(5638), 1348 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92(12), 126603 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nat. Photonics 9(12), 796 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    O. Hosten and P. Kwiat, Observation of the spin Hall effect of light via weak measurements, Science 319(5864), 787 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    X. Zhou, Z. Xiao, H. Luo, and S. Wen, Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A 85(4), 043809 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Photonic spin Hall effect at metasurfaces, Science 339(6126), 1405 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    X. Zhou, X. Ling, H. Luo, and S. Wen, Identifying graphene layers via spin Hall effect of light, Appl. Phys. Lett. 101(25), 251602 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. C. Miller and N. Ashby, Shifts of electron beam position due to total reflection at a barrier, Phys. Rev. Lett. 29(11), 740 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    D. M. Fradkin and R. J. Kashuba, Spatial displacement of electrons due to multiple total reflections, Phys. Rev. D 9(10), 2775 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    D. M. Fradkin and R. J. Kashuba, Position-operator method for evaluating the shift of a totally reflected electron, Phys. Rev. D 10(4), 1137 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Disorder effects in the anomalous Hall effect induced by Berry curvature, Phys. Rev. B 72(4), 045346 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    X. Chen, C. F. Li, and Y. Ban, Tunable lateral displacement and spin beam splitter for ballistic electrons in two-dimensional magnetic-electric nanostructures, Phys. Rev. B 77(7), 073307 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    X. Chen, X. J. Lu, Y. Wang, and C. F. Li, Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field, Phys. Rev. B 83(19), 195409 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, Quantum Goos-Hänchen effect in graphene, Phys. Rev. Lett. 102(14), 146804 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    L. Zhao and S. F. Yelin, Proposal for graphene-based coherent buffers and memories, Phys. Rev. B 81(11), 115441 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M. Sharma and S. Ghosh, Electron transport and Goos-Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure, J. Phys.: Condens. Matter 23(5), 055501 (2011)ADSGoogle Scholar
  25. 25.
    Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang, Valley-dependent brewster angles and Goos-Hänchen effect in strained graphene, Phys. Rev. Lett. 106(17), 176802 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    X. Chen, J. W. Tao, and Y. Ban, Goos-Hänchen-like shifts for Dirac fermions in monolayer graphene barrier, Eur. Phys. J. B 79(2), 203 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    X. Chen, P. L. Zhao, and X. J. Lu, Giant negative and positive lateral shifts in graphene superlattices, Eur. Phys. J. B 86(5), 223 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    S. Chen, Z. Han, M. M. Elahi, K. M. M. Habib, L. Wang, B. Wen, Y. Gao, T. Taniguchi, K. Watanabe, J. Hone, A. W. Ghosh, and C. R. Dean, Electron optics with p-n junctions in ballistic graphene, Science 353(6307), 1522 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    J. Spector, H. L. Stormer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Electron focusing in two-dimensional systems by means of an electrostatic lens, Appl. Phys. Lett. 56(13), 1290 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    L. W. Molenkamp, A. A. M. Staring, C. W. J. Beenakker, R. Eppenga, C. E. Timmering, J. G. Williamson, C. J. P. M. Harmans, and C. T. Foxon, Electron-beam collimation with a quantum point contact, Phys. Rev. B 41(2), 1274 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    D. Dragoman and M. Dragoman, Optical analogue structures to mesoscopic devices, Prog. Quantum Electron. 23(4–5), 131 (1999)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, Topological Imbert-Fedorov Shift in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156602 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    S. A. Yang, H. Pan, and F. Zhang, Chirality-Dependent Hall Effect in Weyl Semimetals, Phys. Rev. Lett. 115(15), 156603 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    L. Wang and S. K. Jian, Imbert-Fedorov shift in Weyl semimetals: Dependence on monopole charge and intervalley scattering, Phys. Rev. B 96(11), 115448 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    U. Chattopadhyay, L.K. Shi, B. Zhang, J. C. W. Song, and Y. D. Chong, Fermi arc induced vortex structure in Weyl beam shifts, arXiv: 1809.03159 (2018)Google Scholar
  36. 36.
    A. F. Andreev, Thermal conductivity of the intermediate state of superconductors, Sov. Phys. JETP 19, 1228 (1964)Google Scholar
  37. 37.
    P. G. de Gennes, Superconductivity in Metals and Alloys, New York: Benjamin, 1966zbMATHGoogle Scholar
  38. 38.
    Y. Liu, Z. M. Yu, and S. A. Yang, Transverse shift in Andreev reflection, Phys. Rev. B 96(12), 121101 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Liu, Z. M. Yu, H. Jiang, and S. A. Yang, Goos-Hänchen-like shifts at a metal/superconductor interface, Phys. Rev. B 98(7), 075151 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    Z. M. Yu, Y. Liu, Y. Yao, and S. A. Yang, Unconventional pairing induced anomalous transverse shift in Andreev reflection, Phys. Rev. Lett. 121(17), 176602 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Liu, Z. M. Yu, J. Liu, H. Jiang, and S. A. Yang, Transverse shift in crossed Andreev reflection, Phys. Rev. B 98(19), 195141 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    J. M. Byers and M. E. Flatté, Probing spatial correlations with nanoscale two-contact tunneling, Phys. Rev. Lett. 74(2), 306 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    G. Deutscher and D. Feinberg, Coupling superconducting-ferromagnetic point contacts by Andreev reflections, Appl. Phys. Lett. 76(4), 487 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    X. Chen, X. J. Lu, Y. Ban, and C. F. Li, Electronic analogy of the Goos-Hänchen effect: A review, J. Opt. 15(3), 033001 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    K. Y. Bliokh and A. Aiello, Goos-Hänchen and Imbert-Fedorov beam shifts: An overview, J. Opt. 15(1), 014001 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    S. A. Yang, G. S. D. Beach, C. Knutson, D. Xiao, Z. Zhang, M. Tsoi, Q. Niu, A. H. MacDonald, and J. L. Erskine, Topological electromotive force from domain-wall dynamics in a ferromagnet, Phys. Rev. B 82(5), 054410 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Gao, S. A. Yang, and Q. Niu, Field induced positional shift of Bloch electrons and its dynamical implications, Phys. Rev. Lett. 112(16), 166601 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B 91(21), 214405 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magnetoconductivity of nonmagnetic metals, Phys. Rev. B 95(16), 165135 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    D. Culcer, Y. Yao, and Q. Niu, Coherent wave-packet evolution in coupled bands, Phys. Rev. B 72(8), 085110 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    S. A. Yang, Dirac and Weyl materials: Fundamental aspects and some spintronics applications, SPIN 06(02), 1640003 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B 93 (19), 195165 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B 25(7), 4515 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    M. J. M. de Jong and C. W. J. Beenakker, Andreev reflection in ferromagnet-superconductor junctions, Phys. Rev. Lett. 74(9), 1657 (1995)ADSCrossRefGoogle Scholar
  58. 58.
    S. Kashiwaya and Y. Tanaka, Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys. 63(10), 1641 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    H. Plehn, U. Gunsenheimer, and R. Kümmel, Subgap peak and Tomash-McMillan-Anderson oscillations in the density of states of SNS Bridges., J. Low Temp. Phys. 83(1–2), 71 (1991)ADSCrossRefGoogle Scholar
  60. 60.
    J. Hara, M. Ashida, and K. Nagai, Pair potential and density of states in proximity-contact superconducting-normal-metal double layers, Phys. Rev. B 47(17), 11263 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    H. Plehn, O. J. Wacker, and R. Kümmel, Electronic structure of superconducting multilayers, Phys. Rev. B 49(17), 12140 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    C. W. J. Beenakker, Specular Andreev reflection in graphene, Phys. Rev. Lett. 97(6), 067007 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Topological node-line semimetal in three-dimensional graphene networks, Phys. Rev. B 92(4), 045108 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen, and S. Zhang, Nanostructured carbon allotropes with Weyl-like loops and points, Nano Lett. 15(10), 6974 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    M. Sigrist, A. Avella, and F. Mancini, Introduction to unconventional superconductivity, AIP Conf. Proc. 789, 165 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    Y. Tanaka and S. Kashiwaya, Theory of tunneling spectroscopy of d-wave superconductors, Phys. Rev. Lett. 74(17), 3451 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72(4), 969 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(2), 657 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    C. Kallin and J. Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79(5), 054502 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    D. Beckmann, H. B. Weber, and H. v. Löhneysen, Evidence for Crossed Andreev Reflection in Superconductor-Ferromagnet Hybrid Structures, Phys. Rev. Lett. 93 (19), 197003 (2004)ADSCrossRefGoogle Scholar
  71. 71.
    S. Russo, M. Kroug, T. M. Klapwijk, and A. F. Morpurgo, Experimental observation of bias-dependent non-local Andreev reflection, Phys. Rev. Lett. 95(2), 027002 (2005)ADSCrossRefGoogle Scholar
  72. 72.
    P. Cadden-Zimansky, and V. Chandrasekhar, Nonlocal correlations in normal-metal superconducting systems, Phys. Rev. Lett. 97(23), 237003 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    M. Veldhorst, and A. Brinkman, Nonlocal Cooper pair splitting in a pSn junction, Phys. Rev. Lett. 105(10), 107002 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    S. Y. Lee, A. Goussev, O. Georgiou, G. Gligorić, and A. Lazarides, Sticky Goos-Hänchen effect at normal/superconductor interface, Europhys. Lett. (EPL) 103(2), 20004 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    A. Ohtomo and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)ADSCrossRefGoogle Scholar
  78. 78.
    L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A. P. Li, and G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges, Science 343(6167), 163 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Laboratory for Quantum MaterialsSingapore University of Technology and DesignSingaporeSingapore

Personalised recommendations