Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions
- 11 Downloads
Abstract
The dynamics of measurement’s uncertainty via entropy for a one-dimensional Heisenberg XYZ mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii–Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed’s temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement’s uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji > 0) and ferromagnetic (Ji < 0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement’s uncertainty in the region of high-temperature. Finally, we remarkably offer a resultful strategy to govern the entropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and computation.
Keywords
measurement uncertainty concurrence Heisenberg XYZ chain weak measurement lower boundNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 61601002 and 11575001), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139), and the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701).
References
- 1.W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43(3–4), 172 (1927)ADSzbMATHGoogle Scholar
- 2.M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000zbMATHGoogle Scholar
- 3.I. Bialynicki-Birula, Rényi entropy and the uncertainty relations, AIP Conf. Proc. 889, 52 (2007)ADSzbMATHGoogle Scholar
- 4.E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44(4–5), 326 (1927)ADSzbMATHGoogle Scholar
- 5.H. P. Robertson, The uncertainty principle, Phys. Rev. 34(1), 163 (1929)ADSGoogle Scholar
- 6.L. Maccone and A. K. Pati, Stronger Uncertainty Relations for All Incompatible Observables., Phys. Rev. Lett. 113(26), 260401 (2014)ADSGoogle Scholar
- 7.K. K. Wang, X. Zhan, Z. H. Bian, J. Li, Y. S. Zhang, and P. Xue, Experimental investigation of the stronger uncertainty relations for all incompatible observables, Phys. Rev. A 93(5), 052108 (2016)ADSGoogle Scholar
- 8.K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35(10), 3070 (1987)ADSMathSciNetGoogle Scholar
- 9.H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60(12), 1103 (1988)ADSMathSciNetGoogle Scholar
- 10.A. E. Rastegin, Entropic uncertainty relations for successive measurements of canonically conjugate observables, Ann. Phys. (Berlin) 528(11–12), 835 (2016)ADSzbMATHGoogle Scholar
- 11.A. Ghasemi, M. R. Hooshmandasl, and M. K. Tavassoly, On the quantum information entropies and squeezing associated with the eigenstates of the isotonic oscillator, Phys. Scr. 84(3), 035007 (2011)ADSzbMATHGoogle Scholar
- 12.D. Wang, A. J. Huang, R. D. Hoehn, F. Ming, W. Y. Sun, J. D. Shi, L. Ye, and S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir, Sci. Rep. 7(1), 1066 (2017)ADSGoogle Scholar
- 13.J. M. Renes and J. C. Boileau, Conjectured strong complementary information tradeoff, Phys. Rev. Lett. 103(2), 020402 (2009)ADSGoogle Scholar
- 14.M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6(9), 659 (2010)Google Scholar
- 15.R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys. 7(10), 757 (2011)Google Scholar
- 16.C. F. Li, J. S. Xu, X. Y. Xu, K. Li, and G. C. Guo, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys. 7(10), 752 (2011)Google Scholar
- 17.Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)Google Scholar
- 18.P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Uncertainty Relations from Simple Entropic Properties, Phys. Rev. Lett. 108(21), 210405 (2012)ADSGoogle Scholar
- 19.Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)ADSGoogle Scholar
- 20.M. J. W. Hall and H. M. Wiseman, Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information, New J. Phys. 14(3), 033040 (2012)ADSGoogle Scholar
- 21.C. S. Yu, Quantum coherence via skew information and its polygamy, Phys. Rev. A 95(4), 042337 (2017)ADSGoogle Scholar
- 22.P. J. Coles and M. Piani, Complementary sequential measurements generate entanglement, Phys. Rev. A 89(1), 010302 (2014)ADSGoogle Scholar
- 23.M. L. Hu and H. Fan, Upper bound and shareability of quantum discord based on entropic uncertainty relations, Phys. Rev. A 88(1), 014105 (2013)ADSGoogle Scholar
- 24.X. Y. Chen, L. Z. Jiang, and Z. A. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger–Horne–Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)Google Scholar
- 25.X. M. Liu, W. W. Cheng, and J. M. Liu, Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii–Moriya interaction, Sci. Rep. 6, 19359 (2016)ADSGoogle Scholar
- 26.X. M. Liu, Z. Z. Du, and J. M. Liu, Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field, Quantum Inform. Process. 15(4), 1793 (2016)MathSciNetzbMATHGoogle Scholar
- 27.N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)ADSGoogle Scholar
- 28.F. Grosshans and N. J. Cerf, Continuous-variable quantum cryptography is secure against non-Gaussian attacks, Phys. Rev. Lett. 92(4), 047905 (2004)ADSGoogle Scholar
- 29.F. Dupuis, O. Fawzi, and S. Wehner, Entanglement Sampling and Applications, IEEE Trans. Inf. Theory 61(2), 1093 (2015)MathSciNetzbMATHGoogle Scholar
- 30.R. Konig, S. Wehner, and J. Wullschleger, Unconditional security from noisy quantum storage, IEEE Trans. Inf. Theory 58(3), 1962 (2012)MathSciNetzbMATHGoogle Scholar
- 31.G. Vallone, D. G. Marangon, M. Tomasin, and P. Villoresi, Quantum randomness certified by the uncertainty principle, Phys. Rev. A 90(5), 052327 (2014)ADSGoogle Scholar
- 32.C. A. Miller and Y. Shi, Proceedings of ACM STOC, New York: ACM Press, 2014, pp 417–426Google Scholar
- 33.D. Mondal, S. Bagchi, and A. K. Pati, Tighter uncertainty and reverse uncertainty relations, Phys. Rev. A 95(5), 052117 (2017)ADSGoogle Scholar
- 34.A. Riccardi, C. Macchiavello, and L. Maccone, Tight entropic uncertainty relations for systems with dimension three to five, Phys. Rev. A 95(3), 032109 (2017)ADSMathSciNetGoogle Scholar
- 35.Z. Y. Xu, W. L. Yang, and M. Feng, Quantum-memoryassisted entropic uncertainty relation under noise, Phys. Rev. A 86(1), 012113 (2012)ADSGoogle Scholar
- 36.Z. Y. Zhang, D. X. Wei, and J. M. Liu, Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence, Laser Phys. Lett. 15(6), 065207 (2018)ADSGoogle Scholar
- 37.M. Yu and M. F. Fang, Controlling the quantummemory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments, Quantum Inform. Process. 16(9), 213 (2017)ADSzbMATHGoogle Scholar
- 38.Y. L. Zhang, M. F. Fang, G. D. Kang, and Q. P. Zhou, Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal, Int. J. Quant. Inf. 13(05), 1550037 (2015)zbMATHGoogle Scholar
- 39.H. M. Zou, M. F. Fang, B. Y. Yang, Y. N. Guo, W. He, and S. Y. Zhang, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr. 89(11), 115101 (2014)ADSGoogle Scholar
- 40.L. J. Jia, Z. H. Tian, and J. L. Jing, Entropic uncertainty relation in de Sitter space, Ann. Phys. 353, 37 (2015)ADSMathSciNetzbMATHGoogle Scholar
- 41.A. J. Huang, J. D. Shi, D. Wang, and L. Ye, Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations, Quantum Inform. Process. 16(2), 46 (2017)ADSMathSciNetzbMATHGoogle Scholar
- 42.X. Zheng and G. F. Zhang, The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski-Moriya interaction, Quantum Inform. Process. 16(1), 1 (2017)ADSMathSciNetzbMATHGoogle Scholar
- 43.D. Wang, F. Ming, A. J. Huang, W. Y. Sun, J. D. Shi, and L. Ye, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett. 14(5), 055205 (2017)ADSGoogle Scholar
- 44.D. Wang, W. N. Shi, R. D. Hoehn, F. Ming, W. Y. Sun, S. Kais, and L. Ye, Effects of Hawking radiation on the entropic uncertainty in a Schwarzschild space-time, Ann. Phys. (Berlin) 530(9), 1800080 (2018)Google Scholar
- 45.Z. M. Huang, Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field, Quantum Inform. Process. 17(4), 73 (2018)ADSMathSciNetzbMATHGoogle Scholar
- 46.Z. Y. Zhang, J. M. Liu, Z. F. Hu, and Y. Z. Wang, Entropic uncertainty relation for dirac particles in Garfinkle-Horowitz-Strominger dilation space-time, Ann. Phys. (Berlin) 530(11), 1800208 (2018)ADSGoogle Scholar
- 47.L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)Google Scholar
- 48.J. W. Zhou, P. F. Wang, F. Z. Shi, P. Huang, X. Kong, X. K. Xu, Q. Zhang, Z. X. Wang, X. Rong, and J. F. Du, Quantum information processing and metrology with color centers in diamonds, Front. Phys. 9(5), 587 (2014)Google Scholar
- 49.P. F. Yu, J. G. Cai, J. M. Liu, and G. T. Shen, Teleportation via a two-qubit Heisenberg XYZ model in the presence of phase decoherence, Physica A 387(18), 4723 (2008)ADSGoogle Scholar
- 50.R. Daneshmand and M. K. Tavassoly, The generation and properties of new classes of multipartite entangled coherent squeezed states in a conducting cavity, Ann. Phys. (Berlin) 529(5), 1600246 (2017)ADSGoogle Scholar
- 51.M. Qin, X. Wang, Y. B. Li, Z. Bai, and S. J. Lin, Effects of inhomogeneous magnetic fields and different Dzyaloshinskii–Moriya interaction on entanglement and teleportation in a two-qubit Heisenberg XYZ chain, Chin. Phys. C 37(11), 113102 (2013)ADSGoogle Scholar
- 52.G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)ADSGoogle Scholar
- 53.W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)ADSzbMATHGoogle Scholar
- 54.Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60(14), 1351 (1988)ADSGoogle Scholar
- 55.A. N. Korotkov, Continuous quantum measurement of a double dot, Phys. Rev. B 60(8), 5737 (1999)ADSGoogle Scholar
- 56.A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97(16), 166805 (2006)ADSGoogle Scholar
- 57.X. P. Liao, M. S. Rong, and M. F. Fang, Protecting and enhancing spin squeezing from decoherence using weak measurements, Laser Phys. Lett. 14(6), 065201 (2017)ADSGoogle Scholar
- 58.R. Y. Yang and J. M. Liu, Enhancing the fidelity of remote state preparation by partial measurements, Quantum Inform. Process. 16(5), 125 (2017)ADSMathSciNetzbMATHGoogle Scholar
- 59.A. N. Korotkov and K. Keane, Decoherence suppression by quantum measurement reversal, Phys. Rev. A 81(4), 040103 (2010)ADSGoogle Scholar
- 60.S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A 89(2), 022318 (2014)ADSGoogle Scholar