Advertisement

Frontiers of Physics

, 14:33401 | Cite as

Local electrical characterization of two-dimensional materials with functional atomic force microscopy

  • Sabir Hussain
  • Kunqi Xu
  • Shili Ye
  • Le Lei
  • Xinmeng Liu
  • Rui XuEmail author
  • Liming Xie
  • Zhihai Cheng
Review Article
  • 53 Downloads

Abstract

Research about two-dimensional (2D) materials is growing exponentially across various scientific and engineering disciplines due to the wealth of unusual physical phenomena that occur when charge transport is confined to a plane. The applications of 2D materials are highly affected by the electrical properties of these materials, including current distribution, surface potential, dielectric response, conductivity, permittivity, and piezoelectric response. Hence, it is very crucial to characterize these properties at the nanoscale. The Atomic Force Microscopy (AFM)-based techniques are powerful tools that can simultaneously characterize morphology and electrical properties of 2D materials with high spatial resolution, thus being more and more extensively used in this research field. Here, the principles of these AFM techniques are reviewed in detail. After that, their representative applications are further demonstrated in the local characterization of various 2D materials’ electrical properties.

Keywords

advanced AFM techniques nanoscale characterization electrical properties 2D materials 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21622304, 61674045, and 11604063), the Ministry of Science and Technology (MOST) of China (No. 2016YFA0200700), the Strategic Priority Research Program, the Key Research Program of Frontier Sciences and Instrument Developing Project of Chinese Academy of Sciences (CAS) (Nos. XDB30000000, QYZDB-SSW-SYS031, and YZ201418), Osaka University’s International Joint Research Promotion Program (Nos. J171013014 and J171013007). Z. H. Cheng was supported by Distinguished Technical Talents Project and Youth Innovation Promotion Association CAS, the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (No. 18XNLG01).

References

  1. 1.
    H. T. Yuan, H. T. Wang, and Y. Cui, Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling, Acc. Chem. Res. 48(1), 81 (2015)CrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)CrossRefGoogle Scholar
  3. 3.
    J. W. May, Platinum surface LEED rings, Surf. Sci. 17(1), 267 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Scienc. 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    I. Meric, N. Baklitskaya, P. Kim, and K. L. Shepard, RF performance of top-gated, zero-bandgap graphene fieldeffect transistors, 2008 International Electron Devices Meeting, San Francisco, CA, 2008, pp 1–4Google Scholar
  6. 6.
    I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zerobandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. I. Katsnelson, Graphene: Carbon in two dimensions, Mater. Toda. 10(1–2), 20 (2007)CrossRefGoogle Scholar
  8. 8.
    A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    X. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5(1), 3689 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, and P. Kim, Electronic transport measurements in graphene nanoribbons, Phys. Status Solidi. 244(11), 4134 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Sikora, M. Woszczyna, M. Friedemann, F. J. Ahlers, and M. Kalbac, AFM diagnostics of graphene-based quantum Hall devices, Micron 43(2–3), 479 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Zhu, D. Du and Y. Lin, Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review, 2D Mater. 2(3), 032004 (2015)CrossRefGoogle Scholar
  14. 14.
    M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, A graphene field-effect device, IEEE Electr. Device L, 28(4), 282 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    N. D. Lu, L. F. Wang, L. Li, and M. Liu, A review for compact model of graphene field-effect transistors, Chin. Phys. B 26(3), 036804 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonic. 4(9), 611 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Q. L. Bao and K. P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nan. 6(5), 3677 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Yavari and N. Koratkar, Graphene-based chemical sensors, J. Phys. Chem. Lett. 3(13), 1746 (2012)CrossRefGoogle Scholar
  19. 19.
    J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nan. 3(2), 301 (2009)CrossRefGoogle Scholar
  20. 20.
    M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures, Nano Lett. 13(6), 2814 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    I. N. Kholmanov, S. H. Domingues, H. Chou, X. H. Wang, C. Tan, J. Y. Kim, H. F. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nan. 7(2), 1811 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, High efficiency graphene solar cells by chemical doping, Nano Lett. 12(6), 2745 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Liu, J. Li, and F. Yan, Package-free flexible organic solar cells with graphene top electrodes, Adv. Mater. 25(31), 4296 (2013)CrossRefGoogle Scholar
  24. 24.
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. US. 102(30), 10451 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    S. Z. Butler, S. M. Hollen, L. Y. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. X. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nan. 7(4), 2898 (2013)CrossRefGoogle Scholar
  26. 26.
    Mas-Ballesté, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D materials: To graphene and beyond, Nanoscale 3(1), 20 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Scienc. 335(6071), 947 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. Castro Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett. 12(3), 1707 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    R. A. Doganov, E. C. T. O’Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, and B. Özyilmaz, Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere, Nat. Commun. 6(1), 6647 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Kumar, and P. K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. . 85(6), 186 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    S. V. Kalinin and D. A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev.. 65(12), 125408 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan, and K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2, Nat. Nanotechnol. 10(9), 765 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    X. Xi, Z. Wang, W. Zhao, J. H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F. Mak, Ising pairing in superconducting NbSe2 atomic layers, Nat. Phys. 12(2), 139 (2016)CrossRefGoogle Scholar
  38. 38.
    A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava, J. Hone, P. Kim, C. R. Dean, and A. N. Pasupathy, Nature of the quantum metal in a two-dimensional crystalline superconductor, Nat. Phys. 12(3), 208 (2016)CrossRefGoogle Scholar
  39. 39.
    S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Annu. Rev. Mater. Res. 45(1), 63 (2015)Google Scholar
  40. 40.
    J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett. 12(8), 4013 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian and X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    J. Deng, D. Deng, and X. Bao, Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective, Adv. Mater. 29(43), 1606967 (2017)CrossRefGoogle Scholar
  43. 43.
    F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Lett. 13(2), 668 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    B. Cho, A. R. Kim, D. J. Kim, H. S. Chung, S. Y. Choi, J. D. Kwon, S. W. Park, Y. Kim, B. H. Lee, K. H. Lee, D. H. Kim, J. Nam, and M. G. Hahm, Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor, ACS Appl. Mater. Interface. 8(30), 19635 (2016)CrossRefGoogle Scholar
  45. 45.
    J. Seo, J. Jang, S. Park, C. Kim, B. Park, and J. Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries, Adv. Mater. 20(22), 4269 (2008)CrossRefGoogle Scholar
  46. 46.
    K. S. Chen, I. Balla, N. S. Luu, and M. C. Hersam, Emerging opportunities for two-dimensional materials in lithium-ion batteries, ACS Energy Lett. 2(9), 2026 (2017)CrossRefGoogle Scholar
  47. 47.
    N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro- Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Photosensor device based on few-layered WS2 films, Adv. Funct. Mater. 23(44), 5511 (2013)CrossRefGoogle Scholar
  48. 48.
    N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas and M. Terrones, CVDgrown monolayered MoS2 as an effective photosensor operating at low-voltage, 2D Mater. 1(1), 011004 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Amani, M. L. Chin, A. G. Birdwell, T. P. O’Regan, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, and M. Dubey, Electrical performance of monolayer MoS2 fieldeffect transistors prepared by chemical vapor deposition, Appl. Phys. Lett. 102(19), 193107 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    S. Ahmed and J. Yi, Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors, Nano-Micro Lett. 9(4), 50 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56(9), 930 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, Atomic resolution with atomic force microscope, Europhys. Lett. 3(12), 1281 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100‐Å scale, J. Appl. Phys. 61(10), 4723 (1987)ADSCrossRefGoogle Scholar
  54. 54.
    M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Appl. Phys. Lett. 58(25), 2921 (1991)ADSCrossRefGoogle Scholar
  55. 55.
    F. Pérez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, and F. Sanz, Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy, J. Appl. Phys. 78(11), 6797 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    R. García and R. Perez, Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47(6–8), 197 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    H. Hölscher and U. D. Schwarz, Theory of amplitude modulation atomic force microscopy with and without Q-control, Int. J. Non-linear Mech. 42(4), 608 (2007)CrossRefADSGoogle Scholar
  58. 58.
    Y. Sugawara, T. Uchihashi, M. Abe, and S. Morita, True atomic resolution imaging of surface structure and surface charge on the GaAs(110), Appl. Surf. Sci. 140(3–4), 371 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    S. K. Jang, J. Youn, Y. J. Song, and S. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric, Sci. Rep. 6(1), 30449 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    A. Belianinov, S. V. Kalinin, and S. Jesse, Complete information acquisition in dynamic force microscopy, Nat. Commun. 6(1), 6550 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    H. Martinez, C. Auriel, D. Gonbeau, M. Loudet, and G. Pfister-Guillouzo, Studies of 1T TiS2 by STM, AFM and XPS: The mechanism of hydrolysis in air, Appl. Surf. Sci. 93(3), 231 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    M. G. Ruppert, D. M. Harcombe, M. R. P. Ragazzon, S. O. R. Moheimani, and A. J. Fleming, A review of demodulation techniques for amplitude-modulation atomic force microscopy, Beilstein J. Nanotechnol. 8, 1407 (2017)CrossRefGoogle Scholar
  63. 63.
    Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Tech. Sci. 61(3), 446 (2018)CrossRefGoogle Scholar
  64. 64.
    G. Benstetter, R. Biberger, and D. P. Liu, A review of advanced scanning probe microscope analysis of functional films and semiconductor devices, Thin Solid Films 517(17), 5100 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    R. A. Oliver, Advances in AFM for the electrical characterization of semiconductors, Rep. Prog. Phys. 71(7), 076501 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    A. Avila and B. Bhushan, Electrical measurement techniques in atomic force microscopy, Crit. Rev. Solid State Mater. Sci. 35(1), 38 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    S. Liu and Y. Wang, A review of the application of atomic force microscopy (AFM) in food science and technology, Adv. Food Nutr. Res. 62, 201 (2011)CrossRefGoogle Scholar
  68. 68.
    I. Pecorari, L. Puzzi, and O. Sbaizero, Atomic force microscopy and lamins: A review study towards future, combined investigations, Microsc. Res. Tech. 80(1), 97 (2017)CrossRefGoogle Scholar
  69. 69.
    S. V. Kontomaris and A. Stylianou, Atomic force microscopy for university students: Applications in biomaterials, Eur. J. Phys. 38(3), 033003 (2017)CrossRefGoogle Scholar
  70. 70.
    M. Li, D. Dang, L. Q. Liu, N. Xi, and Y. C. Wang, Atomic force microscopy in characterizing cell mechanics for biomedical applications: A review, IEEE. T. Nanobiosci. 16(6), 523 (2017)CrossRefGoogle Scholar
  71. 71.
    F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes, Appl. Phys. Lett. 69(13), 1975 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    J. E. Shaw, A. Perumal, D. D. C. Bradley, P. N. Stavrinou, and T. D. Anthopoulos, Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy, J. Appl. Phys. 119(19), 195501 (2016)ADSCrossRefGoogle Scholar
  73. 73.
    F. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, I. P. Oliveri, S. Agnello, and F. Roccaforte, Current injection from metal to MoS2 probed at nanoscale by conductive atomic force microscopy, Mater. Sci. Semicond. Process. 42, 174 (2016)CrossRefGoogle Scholar
  74. 74.
    J. Yang, P. Gordiichuk, O. Zheliuk, J. Lu, A. Herrmann, and J. Ye, Role of defects in tuning the electronic properties of monolayer WS2 grown by chemical vapor deposition, Phys. Status Solidi RRL. 11(10), 1700302 (2017)CrossRefGoogle Scholar
  75. 75.
    M. R. Rosenberger, H. J. Chuang, K. M. McCreary, C. H. Li, and B. T. Jonker, Electrical characterization of discrete defects and impact of defect density on photoluminescence in monolayer WS2, ACS Nan. 12(2), 1793 (2018)CrossRefGoogle Scholar
  76. 76.
    S. J. O’Shea, Conducting atomic force microscopy study of silicon dioxide breakdown, J. Vac. Sci. Technol.. 13(5), 1945 (1995)CrossRefGoogle Scholar
  77. 77.
    L. Zhang and Y. Mitani, Structural and electrical evolution of gate dielectric breakdown observed by conductive atomic force microscopy, Appl. Phys. Lett. 88(3), 032906 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    E. Koren, Y. Rosenwaks, J. E. Allen, E. R. Hemesath, and L. J. Lauhon, Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy, Appl. Phys. Lett. 95(9), 092105 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    H. J. Lee and S. M. Park, Electrochemistry of conductive polymers. 30. Nanoscale measurements of doping distributions and current-voltage characteristics of electrochemically deposited polypyrrole films, J. Phys. Chem. B 108(5), 1590 (2004)CrossRefGoogle Scholar
  80. 80.
    R. Vidyasagar, B. Camargo, K. Romanyuk, and A. L. Kholkin, Surface potential distribution of multilayer graphene using Kelvin probe and electric-field force microscopies, Ferroelectr. 508(1), 115 (2017)CrossRefGoogle Scholar
  81. 81.
    A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)CrossRefGoogle Scholar
  82. 82.
    V. Kaushik, D. Varandani, and B. R. Mehta, Nanoscale mapping of layer-dependent surface potential and junction properties of cvd-grown MoS2 domains, J. Phys. Chem.. 119(34), 20136 (2015)Google Scholar
  83. 83.
    T. Filleter, K. V. Emtsev, T. Seyller, and R. Bennewitz, Local work function measurements of epitaxial graphene, Appl. Phys. Lett. 93(13), 133117 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    Y. Shen, X. Zhang, Y. Wang, X. Zhou, J. Hu, S. Guo, and Y. Zhang, Charge transfer between reduced graphene oxide sheets on insulating substrates, Appl. Phys. Lett. 103(5), 053107 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    A. Liscio, G. P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì, and V. Palermo, Charge transport in graphene–polythiophene blends as studied by Kelvin probe force microscopy and transistor characterization, J. Mater. Chem. 21(9), 2924 (2011)CrossRefGoogle Scholar
  86. 86.
    L. Yan, C. Punckt, I. A. Aksay, W. Mertin, and G. Bacher, Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy, Nano Lett. 11(9), 3543 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    M. Lucchesi, G. Privitera, M. Labardi, D. Prevosto, S. Capaccioli, and P. Pingue, Electrostatic force microscopy and potentiometry of realistic nanostructured systems, J. Appl. Phys. 105(5), 054301 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    S. S. Datta, D. R. Strachan, E. J. Mele, and A. T. C. Johnson, Surface potentials and layer charge distributions in few-layer graphene films, Nano Lett. 9(1), 7 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    C. K. Oliveira, M. J. S. Matos, M. S. C. Mazzoni, H. Chacham, and B. R. A. Neves, Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: A confined water effect? Nanotechnol. 23(17), 175703 (2012)ADSCrossRefGoogle Scholar
  90. 90.
    L. Collins, J. I. Kilpatrick, S. A. L. Weber, A. Tselev, I. V. Vlassiouk, I. N. Ivanov, S. Jesse, S. V. Kalinin and B. J. Rodriguez, Open loop Kelvin probe force microscopy with single and multi-frequency excitation, Nanotechnol. 24(47), 475702 (2013)ADSCrossRefGoogle Scholar
  91. 91.
    C. Li, X. D. Ding, and G. C. Lin, Study on multifrequency method for electrostatic force microscopy in air, Integr. Ferroelectr. 145(1), 59 (2013)CrossRefGoogle Scholar
  92. 92.
    Y. P. Jiang, Q. Qi, R. Wang, J. Zhang, Q. K. Xue, C. Wang, C. Jiang, and X. H. Qiu, Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate, ACS Nan. 5(8), 6195 (2011)CrossRefGoogle Scholar
  93. 93.
    C. Gao, T. Wei, F. Duewer, Y. Lu, and X. D. Xiang, High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope, Appl. Phys. Lett. 71(13), 1872 (1997)ADSCrossRefGoogle Scholar
  94. 94.
    D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes, Nano Lett. 15(12), 8136 (2015)ADSCrossRefGoogle Scholar
  95. 95.
    Y. Feng, K. Zhang, F. Wang, Z. Liu, M. Fang, R. Cao, Y. Miao, Z. Yang, W. Mi, Y. Han, Z. Song, and H. S. Wong, Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere, ACS Appl. Mater. Interface. 7(40), 22587 (2015)CrossRefGoogle Scholar
  96. 96.
    Y. Liu, C. Tan, H. Chou, A. Nayak, D. Wu, R. Ghosh, H. Y. Chang, Y. Hao, X. Wang, J. S. Kim, R. Piner, R. S. Ruoff, D. Akinwande, and K. Lai, Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates, Nano Lett. 15(8), 4979 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    W. Kundhikanjana, K. Lai, H. Wang, H. Dai, M. A. Kelly, and Z. Shen, Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging, Nano Lett. 9(11), 3762 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    S. Berweger, P. T. Blanchard, M. D. Brubaker, K. J. Coakley, N. A. Sanford, T. M. Wallis, K. A. Bertness, and P. Kabos, Near-field control and imaging of free charge carrier variations in GaN nanowires, Appl. Phys. Lett. 108(7), 073101 (2016)ADSCrossRefGoogle Scholar
  99. 99.
    E. Brinciotti, G. Gramse, S. Hommel, T. Schweinboeck, A. Altes, M. A. Fenner, J. Smoliner, M. Kasper, G. Badino, S. S. Tuca, and F. Kienberger, Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy, Nanoscal. 7(35), 14715 (2015)ADSCrossRefGoogle Scholar
  100. 100.
    H. P. Huber, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier, C. Rankl, A. Imtiaz, T. M. Wallis, H. Tanbakuchi, P. Hinterdorfer, P. Kabos, J. Smoliner, J. J. Kopanski, and F. Kienberger, Calibrated nanoscale dopant profiling using a scanning microwave microscope, J. Appl. Phys. 111(1), 014301 (2012)ADSCrossRefGoogle Scholar
  101. 101.
    S. K. Kim, R. Bhatia, T. H. Kim, D. Seol, J. H. Kim, H. Kim, W. Seung, Y. Kim, Y. H. Lee, and S. W. Kim, Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators, Nano Energy 22, 483 (2016)Google Scholar
  102. 102.
    M. Park, S. Hong, J. Kim, J. Hong, and K. No, Nanoscale ferroelectric switching behavior at charged domain boundaries studied by angle-resolved Piezoresponse force microscopy, Appl. Phys. Lett. 99(14), 142909 (2011)ADSCrossRefGoogle Scholar
  103. 103.
    S. Kim, V. Gopalan, and A. Gruverman, Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate, Appl. Phys. Lett. 80(15), 2740 (2002)ADSCrossRefGoogle Scholar
  104. 104.
    R. Xu, L. J. Yin, J. B. Qiao, K. K. Bai, J. C. Nie, and L. He, Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy, Phys. Rev.. 91(3), 035410 (2015)CrossRefGoogle Scholar
  105. 105.
    C. J. Chen, Introduction to Scanning Tunneling Microscopy, Columbia University, 2008Google Scholar
  106. 106.
    M. P. Murrell, M. E. Welland, S. J. O’Shea, T. M. H. Wong, J. R. Barnes, A. W. McKinnon, M. Heyns, and S. Verhaverbeke, Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy, Appl. Phys. Lett. 62(7), 786 (1993)ADSCrossRefGoogle Scholar
  107. 107.
    A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoc, and R. Molnar, Current mapping of GaN films by conductive atomic force microscopy, Appl. Phys. Lett. 82(12), 1890 (2003)ADSCrossRefGoogle Scholar
  108. 108.
    W. Frammelsberger, G. Benstetter, J. Kiely, and R. Stamp, C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductivecoated probe tips, Appl. Surf. Sci. 253(7), 3615 (2007)ADSCrossRefGoogle Scholar
  109. 109.
    P. De Wolf, T. Clarysse, and W. Vandervorst, Quantification of nanospreading resistance profiling data, J. Vac. Sci. Technol.. 16(1), 320 (1998)CrossRefGoogle Scholar
  110. 110.
    J. M. Mativetsky, Y. L. Loo, and P. Samorì, Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy, J. Mater. Chem. C Mater. Opt. Electron. Device. 2(17), 3118 (2014)CrossRefGoogle Scholar
  111. 111.
    H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, Resolution and contrast in Kelvin probe force microscopy, J. Appl. Phys. 84(3), 1168 (1998)ADSCrossRefGoogle Scholar
  112. 112.
    J. W. P. Hsu, H. M. Ng, A. M. Sergent, and S. N. G. Chu, Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN, Appl. Phys. Lett. 81(19), 3579 (2002)ADSCrossRefGoogle Scholar
  113. 113.
    J. Ren, H. D. Liess, R. Mackel, and H. Baumgartner, Scanning kelvin microscope: A new method for surface investigations, Fresenius J. Anal. Chem. 353(3–4), 303 (1995)CrossRefGoogle Scholar
  114. 114.
    L. Collins, S. Jesse, N. Balke, B. J. Rodriguez, S. Kalinin, and Q. Li, Band excitation Kelvin probe force microscopy utilizing photothermal excitation, Appl. Phys. Lett. 106(10), 104102 (2015)ADSCrossRefGoogle Scholar
  115. 115.
    S. Guo, S. V. Kalinin, and S. Jesse, Open-loop band excitation Kelvin probe force microscopy, Nanotechnol. 23(12), 125704 (2012)ADSCrossRefGoogle Scholar
  116. 116.
    M. Neek-Amal, L. Covaci, K. Shakouri, and F. Peeters, Electronic structure of a hexagonal graphene flake subjected to triaxial stress, Phys. Rev.. 88(11), 115428 (2013)CrossRefGoogle Scholar
  117. 117.
    P. De Wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel, and W. Vandervorst., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, J. Vac. Sci. Technol.. 18(1), 361 (2000)CrossRefGoogle Scholar
  118. 118.
    W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surf. Sci. Rep. 66(1), 1 (2011)ADSCrossRefGoogle Scholar
  119. 119.
    B. Bhushan and A. V. Goldade, Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wea. 244(1–2), 104 (2000)CrossRefGoogle Scholar
  120. 120.
    L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)ADSCrossRefGoogle Scholar
  121. 121.
    R. W. Stark, N. Naujoks, and A. Stemmer, Multifrequency electrostatic force microscopy in the repulsive regime, Nanotechnol. 18(6), 065502 (2007)ADSCrossRefGoogle Scholar
  122. 122.
    X. D. Ding, J. An, J. B. Xu, C. Li, and R. Y. Zeng, Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions, Appl. Phys. Lett. 94(22), 223109 (2009)ADSCrossRefGoogle Scholar
  123. 123.
    T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69(2), 668 (1991)ADSCrossRefGoogle Scholar
  124. 124.
    L. Fumagalli, M. A. Edwards, and G. Gomila, Quantitative electrostatic force microscopy with sharp silicon tips, Nanotechnol. 25(49), 495701 (2014)CrossRefGoogle Scholar
  125. 125.
    S. Gómez-Moñivas, L. S. Froufe, R. Carminati, J. J. Greffet, and J. J. Saenz, Tip-shape effects on electrostatic force microscopy resolution, Nanotechnol. 12(4), 496 (2001)ADSCrossRefGoogle Scholar
  126. 126.
    C. Schönenberger and S. F. Alvarado, Observation of single charge carriers by force microscopy, Phys. Rev. Lett. 65(25), 3162 (1990)ADSCrossRefGoogle Scholar
  127. 127.
    C. Schönenberger, Charge flow during metal-insulator contact, Phys. Rev.. 45, 3861 (1992)CrossRefADSGoogle Scholar
  128. 128.
    S. Gómez-Moñivas, L. S. Froufe-Pérez, A. J. Caamaño, and J. J. Sáenz, Electrostatic forces between sharp tips and metallic and dielectric samples, Appl. Phys. Lett. 79(24), 4048 (2001)ADSCrossRefGoogle Scholar
  129. 129.
    K. Zhang, N. Marzari, and Q. Zhang, Covalently functionalized metallic single-walled carbon nanotubes studied using electrostatic force microscopy and dielectric force microscopy, J. Phys. Chem.. 117(46), 24570 (2013)Google Scholar
  130. 130.
    S. C. Jr Fain, K. A. Barry, M. G. Bush, B. Pittenger, and R. N. Louie, Measuring average tip-sample forces in intermittent-contact (tapping) force microscopy in air, Appl. Phys. Lett. 76, 930 (2000)ADSCrossRefGoogle Scholar
  131. 131.
    C. Riedel, G. A. Schwartz, R. Arinero, P. Tordjeman, G. Leveque, A. Alegria, and J. Colmenero, Nanoscale dielectric properties of insulating thin films: From single point measurements to quantitative images, Ultramicroscop. 110(6), 634 (2010)CrossRefGoogle Scholar
  132. 132.
    P. Girard, Electrostatic force microscopy: Principles and some applications to semiconductors, Nanotechnol. 12(4), 485 (2001)ADSCrossRefGoogle Scholar
  133. 133.
    C. Riedel, R. Arinero, P. Tordjeman, M. Ramonda, G. Lévêque, G. A. Schwartz, D. G. Oteyza, A. Alegria, and J. Colmenero, Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy, J. Appl. Phys. 106(2), 024315 (2009)ADSCrossRefGoogle Scholar
  134. 134.
    L. Collins, J. I. Kilpatrick, I. V. Vlassiouk, A. Tselev, S. A. L. Weber, S. Jesse, S. V. Kalinin, and B. J. Rodriguez, Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface, Appl. Phys. Lett. 104(13), 133103 (2014)ADSCrossRefGoogle Scholar
  135. 135.
    L. Lei, R. Xu, S. Ye, X. Wang, K. Xu, S. Hussain, Y. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, Local characterization of mobile charge carriers by two electrical AFM modes: Multi-harmonic EFM versus sMIM, J. Phys. Commun. 2(2), 025013 (2018)CrossRefGoogle Scholar
  136. 136.
    J. P. Colinge and C. A. Colinge, Physics of Semiconductor, University of California, 2005Google Scholar
  137. 137.
    B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Localized charge force microscopy, J. Vac. Sci. Technol.. 8(1), 374 (1990)ADSCrossRefGoogle Scholar
  138. 138.
    Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett. 52(13), 1103 (1988)ADSCrossRefGoogle Scholar
  139. 139.
    K. Lai, W. Kundhikanjana, M. Kelly, and Z. X. Shen, Modeling and characterization of a cantilever-based nearfield scanning microwave impedance microscope, Rev. Sci. Instrum. 79(6), 063703 (2008)ADSCrossRefGoogle Scholar
  140. 140.
    K. Lai, M. B. Ji, N. Leindecker, M. A. Kelly, and Z. X. Shen, Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes, Rev. Sci. Instrum. 78(6), 063702 (2007)ADSCrossRefGoogle Scholar
  141. 141.
    Y. Tsai, Z. Chu, Y. Han, C. P. Chuu, D. Wu, A. Johnson, F. Cheng, M. Y. Chou, D. A. Muller, X. Li, K. Lai, and C. K. Shih, Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement, Adv. Mater. 29(41), 1703680 (2017)CrossRefGoogle Scholar
  142. 142.
    D. Wu, X. Li, L. Luan, X. Y. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. D. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors, Proc. Natl. Acad. Sci. US. 113(31), 8583 (2016)ADSCrossRefGoogle Scholar
  143. 143.
    X. Rui, Z. Zhiyue, J. Wei, and C. Zhihai, Advance scanning microwave microscopy, Prog. Phys. 35(6), 241 (2015)Google Scholar
  144. 144.
    K. Lai, W. Kundhikanjana, M. A. Kelly, and Z. X. Shen, Nanoscale microwave microscopy using shielded cantilever probes, Appl. Nanosci. 1(1), 13 (2011)ADSCrossRefGoogle Scholar
  145. 145.
    Y. Yang, K. Lai, Q. Tang, W. Kundhikanjana, M. A. Kelly, K. Zhang, Z. Shen, and X. Li, Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging, J. Micromech. Microeng. 22(11), 115040 (2012)CrossRefGoogle Scholar
  146. 146.
    G. Agustí, S. Cobo, A. B. Gaspar, G. Molnár, N. O. Moussa, P. Á. Szilágyi, V. Pálfi, C. Vieu, M. C. Munoz, J. A. Real, and A. Bousseksou, Thermal and light-induced spin crossover phenomena in new 3D Hofmann-like microporous metalorganic frameworks produced as bulk materials and nanopatterned thin films, Chem. Mater. 20(21), 6721 (2008)CrossRefGoogle Scholar
  147. 147.
    A. Tselev, N. V. Lavrik, I. Vlassiouk, D. P. Briggs, M. Rutgers, R. Proksch, and S. V. Kalinin, Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene, Nanotechnol. 23(38), 385706 (2012)CrossRefGoogle Scholar
  148. 148.
    H. Madan, M. Jerry, A. Pogrebnyakov, T. Mayer, and S. Datta, quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition, ACS Nano 9(2), 2009 (2015)CrossRefGoogle Scholar
  149. 149.
    G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer and F. Kienberger, Calibrated complex impedance and permittivity measurements with scanning microwave microscopy, Nanotechnol. 25(14), 145703 (2014)ADSCrossRefGoogle Scholar
  150. 150.
    T. Dargent, K. Haddadi, T. Lasri, N. Clement, D. Ducatteau, B. Legrand, H. Tanbakuchi, and D. Theron, An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements, Rev. Sci. Instrum. 84(12), 123705 (2013)ADSCrossRefGoogle Scholar
  151. 151.
    H. P. Huber, M. Moertelmaier, T. M. Wallis, C. J. Chiang, M. Hochleitner, A. Imtiaz, Y. J. Oh, K. Schilcher, M. Dieudonne, J. Smoliner, P. Hinterdorfer, S. J. Rosner, H. Tanbakuchi, P. Kabos, and F. Kienberger, Calibrated nanoscale capacitance measurements using a scanning microwave microscope, Rev. Sci. Instrum. 81(11), 113701 (2010)ADSCrossRefGoogle Scholar
  152. 152.
    S. Dunn, Determination of cross sectional variation of ferroelectric properties for thin film (Ca. 500 nm) PZT (30/70) via PFM, Integr. Ferroelectr. 59(1), 1505 (2003)CrossRefGoogle Scholar
  153. 153.
    M. S. Ivanov, N. E. Sherstyuk, E. D. Mishina, V. A. Khomchenko, A. Tselev, V. M. Mukhortov, J. A. Paixão, and A. L. Kholkin, Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy, J. Phys.. 50(42), 425303 (2017)ADSGoogle Scholar
  154. 154.
    S. Dunn, C. P. Shaw, Z. Huang, and R. W. Whatmore, Ultrahigh resolution of lead zirconate titanate 30/70 domains as imaged by piezoforce microscopy, Nanotechnol. 13(4), 456 (2002)ADSCrossRefGoogle Scholar
  155. 155.
    P. Güthner, and K. Dransfeld, Local poling of ferroelectric polymers by scanning force microscopy, Appl. Phys. Lett. 61(9), 1137 (1992)ADSCrossRefGoogle Scholar
  156. 156.
    Z. Jiang, G. Zheng, K. Zhan, Z. Han, and H. Wang, Mechanisms of polarization switching in graphene oxides and poly (vinylidene fluoride)–graphene oxide films, Jpn. J. Appl. Phys. 55(4S), 04EP04 (2016)CrossRefGoogle Scholar
  157. 157.
    D. Seol, B. Kim, and Y. Kim, Non-piezoelectric effects in piezoresponse force microscopy, Curr. Appl. Phys. 17(5), 661 (2017)ADSCrossRefGoogle Scholar
  158. 158.
    F. Li, J. Qi, M. Xu, J. Xiao, Y. Xu, X. Zhang, S. Liu, and Y. Zhang, Layer dependence and light tuning surface potential of 2D MoS2 on various substrates, Smal. 13(14), 1603103 (2017)CrossRefGoogle Scholar
  159. 159.
    E. Soergel, Piezoresponse force microscopy (PFM), J. Phys.. 44(46), 464003 (2011)ADSGoogle Scholar
  160. 160.
    N. A. Burnham, X. Chen, C. S. Hodges, G. A. Matei, E. J. Thoreson, C. J. Roberts, M. C. Davies, and S. J. B. Tendler, Comparison of calibration methods for atomicforce microscopy cantilevers, Nanotechnol. 14(1), 1 (2003)ADSCrossRefGoogle Scholar
  161. 161.
    S. Hong, H. Shin, J. Woo, and K. No, Effect of cantilever–sample interaction on piezoelectric force microscopy, Appl. Phys. Lett. 80(8), 1453 (2002)ADSCrossRefGoogle Scholar
  162. 162.
    J. A. Christman, R. R. Jr Woolcott, A. I. Kingon, and R. J. Nemanich, Piezoelectric measurements with atomic force microscopy, Appl. Phys. Lett. 73(26), 3851 (1998)ADSCrossRefGoogle Scholar
  163. 163.
    C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. Lu, and E. T. Yu, Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by Piezoresponse force microscopy, Nano Lett. 17(9), 5464 (2017)ADSCrossRefGoogle Scholar
  164. 164.
    S. V. Kalinin and D. A. Bonnell, Local potential and polarization screening on ferroelectric surfaces, Phys. Rev.. 63(12), 125411 (2001)ADSCrossRefGoogle Scholar
  165. 165.
    S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, Ferroelectric Lithography of Multicomponent Nanostructures, Adv. Mater. 16(910), 795 (2004)CrossRefGoogle Scholar
  166. 166.
    K. Franke, H. Huelz, and M. Weihnacht, How to extract spontaneous polarization information from experimental data in electric force microscopy, Surf. Sci. 415(1–2), 178 (1998)ADSCrossRefGoogle Scholar
  167. 167.
    I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, and M. Alexe, Ferroelectric epitaxial nanocrystals obtained by a self-patterning method, Appl. Phys. Lett. 83(11), 2211 (2003)ADSCrossRefGoogle Scholar
  168. 168.
    J. M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G. P. Veronese, P. Samori, and V. Palermo, local current mapping and patterning of reduced graphene oxide, J. Am. Chem. Soc. 132(40), 14130 (2010)CrossRefGoogle Scholar
  169. 169.
    G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Appl. Phys. Lett. 99(24), 243114 (2011)ADSCrossRefGoogle Scholar
  170. 170.
    L. Jiang, Y. Shi, F. Hui, K. Tang, Q. Wu, C. Pan, X. Jing, H. Uppal, F. Palumbo, G. Lu, T. Wu, H. Wang, M. A. Villena, X. Xie, P. C. McIntyre, and M. Lanza, Dielectric breakdown in chemical vapor deposited hexagonal boron nitride, ACS Appl. Mater. Interface. 9(45), 39758 (2017)CrossRefGoogle Scholar
  171. 171.
    Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, Layer-by-layer dielectric breakdown of hexagonal boron nitride, ACS Nan. 9(1), 916 (2015)CrossRefGoogle Scholar
  172. 172.
    Y. Kobayashi, S. Yoshida, R. Sakurada, K. Takashima, T. Yamamoto, T. Saito, S. Konabe, T. Taniguchi, K. Watanabe, Y. Maniwa, O. Takeuchi, H. Shigekawa, and Y. Miyata, Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction, Sci. Rep. 6(1), 31223 (2016)ADSCrossRefGoogle Scholar
  173. 173.
    H. Lee, N. Son, H. Y. Jeong, T. G. Kim, G. S. Bang, J. Y. Kim, G. W. Shim, K. C. Goddeti, J. H. Kim, N. Kim, H. J. Shin, W. Kim, S. Kim, S. Y. Choi, and J. Y. Park, Friction and conductance imaging of sp2- and sp3-hybridized subdomains on single-layer graphene oxide, Nanoscal. 8, 4063 (2016)ADSCrossRefGoogle Scholar
  174. 174.
    D. Ruzmetov, K. H. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride, ACS Nan. 10(3), 3580 (2016)CrossRefGoogle Scholar
  175. 175.
    C. S. Pathak, M. Garg, J. P. Singh, and R. Singh, Current transport properties of monolayer graphene/n-Si Schottky diodes, Semicond. Sci. Technol. 33(5), 055006 (2018)ADSCrossRefGoogle Scholar
  176. 176.
    J. Choi, H. Y. Zhang, H. D. Du, and J. H. Choi, understanding solvent effects on the properties of twodimensional transition metal dichalcogenides, ACS Appl. Mater. Interfaces 8(14), 8864 (2016)CrossRefGoogle Scholar
  177. 177.
    S. Choi, Z. Shaolin, and W. Yang, Layer-numberdependent work function of MoS2 nanoflakes, J. Korean Phys. Soc. 64(10), 1550 (2014)ADSCrossRefGoogle Scholar
  178. 178.
    K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J. B. Xu, Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy, ACS Nan. 9(10), 9868 (2015)CrossRefGoogle Scholar
  179. 179.
    F. C. Salomão, E. M. Lanzoni, C. A. Costa, C. Deneke, and E. B. Barros, Determination of high-frequency dielectric constant and surface potential of graphene oxide and influence of humidity by Kelvin probe force microscopy, Langmui. 31(41), 11339 (2015)CrossRefGoogle Scholar
  180. 180.
    O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B. K. Bussmann, J. Maultzsch, and M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2, Beilstein J. Nanotechnol. 5, 291 (2015)CrossRefGoogle Scholar
  181. 181.
    Y. Li, C. Y. Xu, J. Y. Wang, and L. Zhen, Photodiodelike behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures, Sci. Rep. 4(1), 7186 (2014)CrossRefGoogle Scholar
  182. 182.
    C. B. Jacobs, K. Wang, A. V. Ievlev, L. Collins, E. S. Muckley, and I. N. Ivanov, Functional two/threedimensional assembly of monolayer WS2 and nickel oxide, J. Photonics Energ. 7(1), 014001 (2017)ADSCrossRefGoogle Scholar
  183. 183.
    B. J. Robinson, C. E. Giusca, Y. T. Gonzalez, N. D. Kay, O. Kazakova and O. V. Kolosov, Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate, 2D Mater. 2(1), 015005 (2015)CrossRefGoogle Scholar
  184. 184.
    H. F. Wen, Y. J. Li, E. Arima, Y. Naitoh, Y. Sugawara, R. Xu, and Z. H. Cheng, Investigation of tunneling current and local contact potential difference on the TiO2 (110) surface by AFM/KPFM at 78K, Nanotechnol. 28(10), 105704 (2017)ADSCrossRefGoogle Scholar
  185. 185.
    K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy, Adv. Mater. 27(41), 6431 (2015)CrossRefGoogle Scholar
  186. 186.
    Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Tuning the graphene work function by electric field effect, Nano Lett. 9(10), 3430 (2009)ADSCrossRefGoogle Scholar
  187. 187.
    F. Long, R. Yasaei, R. Sanoj, W. T. Yao, P. Kral, A. Salehi-Khojin, and R. Shahbazian-Yassar, Characteristic work function variations of graphene line defects, ACS Appl. Mater. Interface. 8(28), 18360 (2016)CrossRefGoogle Scholar
  188. 188.
    C. Zheng, Q. Zhang, B. Weber, H. Ilatikhameneh, F. Chen, H. Sahasrabudhe, R. Rahman, S. Li, Z. Chen, J. Hellerstedt, Y. Zhang, W. H. Duan, Q. Bao, and M. S. Fuhrer, Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures, ACS Nano 11(3), 2785 (2017)CrossRefGoogle Scholar
  189. 189.
    M. Precner, T. Polakovic, Q. Qiao, D. J. Trainer, A. V. Putilov, C. Di Giorgio, I. Cone, Y. Zhu, X. X. Xi, M. Iavarone, and G. Karapetrov, Evolution of metastable defects and its effect on the electronic properties of MoS2 films, Sci. Rep. 8(1), 6724 (2018)ADSCrossRefGoogle Scholar
  190. 190.
    J. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J. H. Park, High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment, Adv. Mater. 28(32), 6985 (2016)CrossRefGoogle Scholar
  191. 191.
    R. Wang, S. N. Wang, D. D. Zhang, Z. J. Li, Y. Fang, and X. H. Qiu, Control of carrier type and density in exfoliated graphene by interface engineering, ACS Nan. 5(1), 408 (2011)CrossRefGoogle Scholar
  192. 192.
    V. Panchal, R. Pearce, R. Yakimova, A. Tzalenchuk, and O. Kazakova, Standardization of surface potential measurements of graphene domains, Sci. Rep. 3(1), 2597 (2013)ADSCrossRefGoogle Scholar
  193. 193.
    J. Li, X. Qi, G. Hao, K. Huang, and J. Zhong, Surface Potential of Graphene Oxide Investigated by Kelvin probe force microscopy, Fuller. Nanotub. Carbon Nanostruct. 23(9), 777 (2015)ADSCrossRefGoogle Scholar
  194. 194.
    G. Hao, Z. Huang, Y. Liu, X. Qi, L. Ren, X. Peng, L. Yang, X. Wei, and J. Zhong, Electrostatic properties of few-layer MoS2 films, AIP Adv. 3(4), 042125 (2013)ADSCrossRefGoogle Scholar
  195. 195.
    X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu, and Y. Zhang, Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun. 8, 15881 (2017)Google Scholar
  196. 196.
    C. Zheng, Z. Q. Xu, Q. Zhang, M. T. Edmonds, K. Watanabe, T. Taniguchi, Q. Bao, and M. S. Fuhrer, profound effect of substrate hydroxylation and hydration on electronic and optical properties of monolayer MoS2, Nano Lett. 15(5), 3096 (2015)ADSCrossRefGoogle Scholar
  197. 197.
    T. H. Ly, H. Kim, Q. H. Thi, S. P. Lau, and J. Zhao, Superior dielectric screening in two-dimensional MoS2 spirals, ACS Appl. Mater. Interface. 9(43), 37941 (2017)CrossRefGoogle Scholar
  198. 198.
    K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, Interlayer transition and infrared photodetection in atomically thin type-II MoTe2 /MoS2 van der Waals heterostructures, ACS Nano 10(3), 3852 (2016)CrossRefGoogle Scholar
  199. 199.
    A. Verdaguer, M. Cardellach, J. J. Segura, G. M. Sacha, J. Moser, M. Zdrojek, A. Bachtold, and J. Fraxedas, Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy, Appl. Phys. Lett. 94(23), 233105 (2009)ADSCrossRefGoogle Scholar
  200. 200.
    Y. S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu, Z. H. Lin, Y. Liu, and Z. L. Wang, Manipulating nanoscale contact electrification by an applied electric field, Nano Lett. 14(3), 1567 (2014)ADSCrossRefGoogle Scholar
  201. 201.
    S. Kim, T. Y. Kim, K. H. Lee, T. H. Kim, F. A. Cimini, S. K. Kim, R. Hinchet, S. W. Kim, and C. Falconi, Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics, Nat. Commun. 8, 15891 (2017)ADSCrossRefGoogle Scholar
  202. 202.
    T. Burnett, R. Yakimova, and O. Kazakova, Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy, Nano Lett. 11(6), 2324 (2011)ADSCrossRefGoogle Scholar
  203. 203.
    V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2, Nat. Nanotechnol. 10(5), 403 (2015)ADSCrossRefGoogle Scholar
  204. 204.
    S. Luo, G. Hao, Y. Fan, L. Kou, C. He, X. Qi, C. Tang, J. Li, K. Huang, and J. Zhong, Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties, Nanotechnol. 26(10), 105705 (2015)ADSCrossRefGoogle Scholar
  205. 205.
    G. Hao, L. Kou, D. Lu, J. Peng, J. Li, C. Tang, and J. Zhong, Electrostatic properties of two-dimensional WSe2 nanostructures, J. Appl. Phys. 119(3), 035301 (2016)ADSCrossRefGoogle Scholar
  206. 206.
    S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)ADSCrossRefGoogle Scholar
  207. 207.
    S. E. Yalcin, C. Galande, R. Kappera, H. Yamaguchi, U. Martinez, K. A. Velizhanin, S. K. Doorn, A. M. Dattelbaum, M. Chhowalla, P. M. Ajayan, G. Gupta, and A. D. Mohite, Direct imaging of charge transport in progressively reduced graphene oxide using electrostatic force microscopy, ACS Nan. 9(3), 2981 (2015)CrossRefGoogle Scholar
  208. 208.
    G. L. Hao, X. Qi, J. Li, L. W. Yang, J. J. Yin, F. Lu, and J. X. Zhong, Surface potentials of few-layer graphene films in high vacuum and ambient conditions, Solid State Commun. 151(11), 818 (2011)ADSCrossRefGoogle Scholar
  209. 209.
    O. Kazakova, V. Panchal, and T. Burnett, Epitaxial graphene and graphene–based devices studied by electrical scanning probe microscopy, Crystal. 3(1), 191 (2013)CrossRefGoogle Scholar
  210. 210.
    S. H. Zhao, Y. Lv, and X. J. Yang, Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy, Nanoscale Res. Lett. 6(1), 498 (2011)ADSCrossRefGoogle Scholar
  211. 211.
    H. Jeong, K. M. Lee, Y. H. Ahn, S. Lee, and J. Y. Park, Non-contact local conductance mapping of individual graphene oxide sheets during the reduction process, J. Phys. Chem. Lett. 6(13), 2629 (2015)CrossRefGoogle Scholar
  212. 212.
    S. Hao, B. Yang, J. Yuan, and Y. Gao, Substrate induced anomalous electrostatic and photoluminescence properties of monolayer MoS2 edges, Solid State Commun. 249, 1 (2017)ADSCrossRefGoogle Scholar
  213. 213.
    L. Jiang, B. Wu, H. Liu, Y. Huang, J. Chen, D. Geng, H. Gao, and Y. Liu, A general approach for fast detection of charge carrier type and conductivity difference in nanoscale materials, Adv. Mater. 25(48), 7015 (2013)CrossRefGoogle Scholar
  214. 214.
    C. Tan, Y. Liu, H. Chou, J. S. Kim, D. Wu, D. Akinwande, and K. Lai, Laser-assisted oxidation of multi-layer tungsten diselenide nanosheets, Appl. Phys. Lett. 108(8), 083112 (2016)ADSCrossRefGoogle Scholar
  215. 215.
    Y. Liu, R. Ghosh, D. Wu, A. Ismach, R. Ruoff, and K. Lai, Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique, Nano Lett. 14(8), 4682 (2014)ADSCrossRefGoogle Scholar
  216. 216.
    P. J. d. Visser, R. Chua, J. O. Island, M. Finkel, A. J. Katan, H. Thierschmann, H. S. J. v. d. Zant and T. M. Klapwijk, Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy, 2D Mater. 3(2), 021002 (2016)CrossRefGoogle Scholar
  217. 217.
    J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, Toward airstable multilayer phosphorene thin-films and transistors, Sci. Rep. 5(1), 8989 (2015)CrossRefGoogle Scholar
  218. 218.
    V. V. Talanov, C. D. Barga, L. Wickey, I. Kalichava, E. Gonzales, E. A. Shaner, A. V. Gin, and N. G. Kalugin, Few-layer graphene characterization by near-field scanning microwave microscopy, ACS Nan. 4, 3831 (2010)CrossRefGoogle Scholar
  219. 219.
    C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. S. Lu, and E. T. Yu, Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by Piezoresponse force microscopy, Nano Lett. 17(9), 5464 (2017)ADSCrossRefGoogle Scholar
  220. 220.
    Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered a-In2Se3 nanoflakes, Nano Lett. 17(9), 5508 (2017)ADSCrossRefGoogle Scholar
  221. 221.
    M. J. Loiacono, E. L. Granstrom, and C. D. Frisbie, Investigation of charge transport in thin, doped sexithiophene crystals by conducting probe atomic force microscopy, J. Phys. Chem.. 102(10), 1679 (1998)CrossRefGoogle Scholar
  222. 222.
    J. Nozaki, S. Mori, Y. Miyata, Y. Maniwa, and K. Yanagi, Local optical absorption spectra of MoS2 monolayers obtained using scanning near-field optical microscopy measurements, Jpn. J. Appl. Phys. 55(3), 038003 (2016)ADSCrossRefGoogle Scholar
  223. 223.
    J. Nozaki, Y. Kobayashi, Y. Miyata, Y. Maniwa, K. Watanabe, T. Taniguchi, and K. Yanagi, Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy, Jpn. J. Appl. Phys. 55(6S1), 06GB01 (2016)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sabir Hussain
    • 1
    • 3
  • Kunqi Xu
    • 1
  • Shili Ye
    • 1
    • 2
    • 3
  • Le Lei
    • 2
  • Xinmeng Liu
    • 2
  • Rui Xu
    • 1
    • 2
    Email author
  • Liming Xie
    • 1
  • Zhihai Cheng
    • 2
  1. 1.CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano DevicesRenmin University of ChinaBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations