Advertisement

Frontiers of Physics

, 14:23201 | Cite as

Log-periodic quantum oscillations in topological or Dirac materials

  • Huichao Wang
  • Yanzhao Liu
  • Haiwen Liu
  • Jian WangEmail author
Research highlight
  • 11 Downloads

Notes

Acknowledgements

We thank X. C. Xie for theoretical contribution. This work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305604 and 2017YFA0303300), the National Natural Science Foundation of China (Grant No. 11774008), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).

References

  1. 1.
    L. Schubnikow and W. J. De Haas, A new phenomenon in the change of resistance in a magnetic field of single crystals of bismuth, Nature 126(3179), 500 (1930)ADSCrossRefGoogle Scholar
  2. 2.
    D. Schoenberg, Magnetic Oscillations in Metals, Cambridge University Press, 1984CrossRefGoogle Scholar
  3. 3.
    Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press, 1997Google Scholar
  4. 4.
    W. J. de Haas and P. M. van Alphen, The dependence of the susceptibility of diamagnetic metals upon the field, Proc. Netherlands Roy. Acad. Sci. 33(1106), 170 (1930)zbMATHGoogle Scholar
  5. 5.
    R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Observation of h/e Aharonov–Bohm oscillations in normal-metal rings, Phys. Rev. Lett. 54(25), 2696 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    B. L. Al’Tshuler, A. G. Aronov, and B. Z. Spivak, The Aaronov-Bohm effect in disordered conductors, JETP Lett. 33(2), 94 (1981)ADSGoogle Scholar
  7. 7.
    W. Gao, N. Hao, F. W. Zheng, W. Ning, M. Wu, X. Zhu, G. Zheng, J. Zhang, J. Lu, H. Zhang, C. Xi, J. Yang, H. Du, P. Zhang, Y. Zhang, and M. Tian, Extremely large magnetoresistance in a topological semimetal candidate pyrite PtBi2, Phys. Rev. Lett. 118(25), 256601 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic fermi surface and quantum limit transport in high mobility threedimensional Dirac semimetal Cd3As2, Phys. Rev.. 5(3), 031037 (2015)CrossRefGoogle Scholar
  9. 9.
    A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-oscillatory conductance in silicon surfaces, Phys. Rev. Lett. 16(20), 901 (1966)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Xiang, Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, L. Chen, K. Sugimoto, S. Kawaguchi, Y. Sato, G. Li, S. Yao, Y. L. Chen, F. Iga, J. Singleton, Y. Matsuda, and L. Li, Quantum oscillations of electrical resistivity in an insulator, Scienc. 362(6410), 65 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    M. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, and M. H. W. Chan, Superconductivity and quantum oscillations in crystalline Bi nanowire, Nano Lett. 9(9), 3196 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J. Wang, X. C. Ma, L. Lu, A. Z. Jin, C. Z. Gu, X. C. Xie, J. F. Jia, X. Chen, and Q. K. Xue, Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts, Appl. Phys. Lett. 92(23), 233119 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    H. Wang, H. Liu, Y. Li, Y. Liu, J. Wang, J. Liu, Ji-Yan Dai, Y. Wang, L. Li, J. Yan, D. Mandrus, X. C. Xie, and J. Wang, Discovery of log-periodic oscillations in ultraquantum topological materials, Sci. Adv. 4(11), eaau5096 (2018)Google Scholar
  14. 14.
    H. Weng, X. Dai, and Z. Fang, Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators, Phys. Rev. X 4(1), 011002 (2014)Google Scholar
  15. 15.
    Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Y. Chen, Z. G. Chen, X. Y. Song, J. A. Schneeloch, G. D. Gu, F. Wang, and N. L. Wang, Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of threedimensional massless Dirac fermions in ZrTe5, Phys. Rev. Lett. 115(17), 176404 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Fan, Q. F. Liang, Y. B. Chen, S. H. Yao, and J. Zhou, Transition between strong and weak topological insulator in ZrTe5 and HfTe5, Sci. Rep. 7(1), 45667 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    B. I. Halperin, Possible states for a three-dimensional electron gas in a strong magnetic field, Jpn. J. Appl. Phys. 26, 1913 (1987)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, and F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun. 7(1), 12516 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    B. Fauqué, D. LeBoeuf, B. Vignolle, M. Nardone, C. Proust, and K. Behnia, Two phase transitions induced by a magnetic field in graphite, Phys. Rev. Lett. 110(26), 266601 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    D. Sornette, Discrete-scale invariance and complex dimensions, Phys. Rep. 297(5), 239 (1998)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd Ed., Perganon Press, 1977zbMATHGoogle Scholar
  23. 23.
    T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H. C. Nägerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Natur. 440(7082), 315 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hutson, Observation of the second triatomic resonance in Efimov’s scenario, Phys. Rev. Lett. 112(19), 190401 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle, and M. Weidemüller, Observation of Efimov resonances in a mixture with extreme mass imbalance, Phys. Rev. Lett. 112(25), 250404 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker, and C. Chin, Geometric scaling of Efimov states in a 6Li-133Cs mixture, Phys. Rev. Lett. 113(24), 240402 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. Ph. H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dörner, Observation of the Efimov state of the helium trimer, Scienc. 348(6234), 551 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Y. B. Zeldovich and V. S. Popov, Electronic structure of superheavy atoms, Sov. Phys. Usp. 14(6), 673 (1972)ADSCrossRefGoogle Scholar
  29. 29.
    W. Greiner, B. Muller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, Springer Science & Business Media, 2013Google Scholar
  30. 30.
    D. Kennedy and C. Norman, So much more to know, Science 309(5731), 78b (2005)CrossRefGoogle Scholar
  31. 31.
    H. Liu, H. Jiang, Z. Wang, R. Joynt, and X. C. Xie, Discrete scale invariance in topological semimetals, arXiv: 1807.02459 (2018)Google Scholar
  32. 32.
    P. Zhang and H. Zhai, Efimov effect in the Dirac Semimetals, Front. Phys. 13(5), 137204 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Wang, Y. Liu, Y. Liu, C. Xi, J. Wang, J. Liu, Y. Wang, L. Li, S. P. Lau, M. Tian, J. Yan, D. Mandrus, J.-Y. Dai, H. Liu, X. C. Xie, and J. Wang, Log-periodic quantum magneto-oscillations and discrete scale invariance in topological material HfTe 5, arXiv: 1810.03109 (2018)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huichao Wang
    • 1
    • 2
    • 3
  • Yanzhao Liu
    • 1
    • 2
  • Haiwen Liu
    • 4
  • Jian Wang
    • 1
    • 2
    • 5
    Email author
  1. 1.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloon, Hong KongChina
  4. 4.Center for Advanced Quantum Studies, Department of PhysicsBeijing Normal UniversityBeijingChina
  5. 5.CAS Center for Excellence in Topological Quantum ComputationUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations