Advertisement

Frontiers of Physics

, 14:23605 | Cite as

Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films

  • Guo-Feng ZhangEmail author
  • Yong-Gang Peng
  • Hai-Qing Xie
  • Bin Li
  • Zhi-Jie Li
  • Chang-Gang Yang
  • Wen-Li Guo
  • Cheng-Bing Qin
  • Rui-Yun Chen
  • Yan Gao
  • Yu-Jun Zheng
  • Lian-Tuan XiaoEmail author
  • Suo-Tang Jia
Research Article
  • 28 Downloads

Abstract

Understanding of charge/energy exchange processes and interfacial interactions that occur between quantum dots (QDs) and the metal oxides is of critical importance to these QD-based optoelectronic devices. This work reports on linear dipole behavior of single near-infrared emitting CdSeTe/ZnS core/shell QDs which are encased in indium tin oxide (ITO) semiconductor nanoparticles films. A strong polarization anisotropy in photoluminescence emission is observed by defocused wide-field imaging and polarization measurement techniques, and the average polarization degree is up to 0.45. A possible mechanism for the observation is presented in which the electrons, locating at single QD surface from ITO by electron transfer due to the equilibration of the Fermi levels, result in a significant Stark distortion of the QD electron/hole wavefunctions. The Stark distortion results in the linear polarization property of the single QDs. The investigation of linear dipole behavior for single QDs encased in ITO films would be helpful for further improving QD-based device performance.

Keywords

single quantum dots linear dipole behavior electron transfer polarization property metal oxide nanoparticles 

Notes

Acknowledgements

We gratefully acknowledge financial support from the National Key R&D Program of China (No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61527824, 61675119, U1510133, 11434007, 11504216, and 61605104), PCSIRT (No. IRT 17R70). Y. Peng was supported by the National Natural Science Foundation of China (No. 11404189). H. Xie was supported by the National Natural Science Foundation of China (No. 11504260).

Supplementary material

11467_2018_874_MOESM1_ESM.pdf (269 kb)
Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films

References

  1. 1.
    M. R. Kim and D. L. Ma, Quantum-dot-based solar cells: Recent advances, strategies, and challenges, J. Phys. Chem. Lett. 6(1), 85 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots, Nano Lett. 15(6), 3793 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat. Mater. 13(8), 796 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Y. Jin, N. H. Song, and T. Q. Lian, Suppressed blinking dynamics of single QDs on ITO, ACS Nano 4(3), 1545 (2010)CrossRefGoogle Scholar
  6. 6.
    N. H. Song, H. M. Zhu, Z. Liu, Z. Q. Huang, D. Wu, and T. Q. Lian, Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy, ACS Nano 7(2), 1599 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Cho, J. Kwak, J. Lim, M. Park, D. Lee, W. K. Bae, Y. S. Kim, K. Char, S. Lee, and C. Lee, Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: Effect of surface energy on device performance, ACS Appl. Mater. Interfaces 7(20), 10828 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Luo, Z. Z. Zhang, H. O. Li, X. X. Song, G. W. Deng, G. Cao, M. Xiao, and G. P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)CrossRefGoogle Scholar
  9. 9.
    Q. B. Zeng, S. Chen, L. You, and R. Lu, Transport through a quantum dot coupled to two majorana bound states, Front. Phys. 12(4), 127302 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Y. Jin and T. Q. Lian, Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles, Nano Lett. 9(6), 2448 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Schottky solar cells based on colloidal nanocrystal films, Nano Lett. 8(10), 3488 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    W. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry, H. A. Atwater, and A. P. Alivisatos, Photovoltaic performance of ultrasmall PbSe quantum dots, ACS Nano 5(10), 8140 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H. Sargent, Quantum junction solar cells, Nano Lett. 12(9), 4889 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Ning, Y. Ren, S. Hoogland, O. Voznyy, L. Levina, P. Stadler, X. Lan, D. Zhitomirsky, and E. H. Sargent, Allinorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation, Adv. Mater. 24(47), 6295 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Issac, S. Y. Jin, and T. Q. Lian, Intermittent electron transfer activity from single CdSe/ZnS quantum dots, J. Am. Chem. Soc. 130(34), 11280 (2008)CrossRefGoogle Scholar
  16. 16.
    P. P. Jha and P. Guyot-Sionnest, Trion decay in colloidal quantum dots, ACS Nano 3(4), 1011 (2009)CrossRefGoogle Scholar
  17. 17.
    S. E. Yalcin, B. Q. Yang, J. A. Labastide, and M. D. Barnes, Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indium tin oxide substrates, J. Phys. Chem. C 116(29), 15847 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Nagao, H. Fujiwara, and K. Sasaki, Analysis of trapstate dynamics of single CdSe/ZnS quantum dots on a TiO2 substrate with different Nb concentrations, J. Phys. Chem. C 118(35), 20571 (2014)CrossRefGoogle Scholar
  19. 19.
    H. W. Cheng, C. T. Yuan, J. S. Wang, T. N. Lin, J. L. Shen, Y. J. Hung, J. Tang, and F. G. Tseng, Modification of photon emission statistics from single colloidal CdSe quantum dots by conductive materials, J. Phys. Chem. C 118(31), 18126 (2014)CrossRefGoogle Scholar
  20. 20.
    B. Li, G. Zhang, Z. Wang, Z. Li, R. Chen, C. Qin, Y. Gao, L. Xiao, and S. Jia, Suppressing the fluorescence blinking of single quantum dots encased in N-type semiconductor nanoparticles, Sci. Rep. 6(1), 32662 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z. J. Li, G. F. Zhang, B. Li, R. Y. Chen, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Enhanced biexciton emission from single quantum dots encased in N-type semiconductor nanoparticles, Appl. Phys. Lett. 111(15), 153106 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    P. P. Jha and P. Guyot-Sionnest, Electrochemical switching of the photoluminescence of single quantum dots, J. Phys. Chem. C 114(49), 21138 (2010)CrossRefGoogle Scholar
  23. 23.
    C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maitre, Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis, Phys. Rev. X 4(2), 021037 (2014)Google Scholar
  24. 24.
    A. G. Silva, C. A. Parra-Murillo, P. T. Valentim, J. S. Morais, F. Plentz, P. S. Guimaraes, H. Vinck-Posada, B. A. Rodriguez, M. S. Skolnick, A. Tahraoui, and M. Hopkinson, Quantum dot dipole orientation and excitation efficiency of micropillar modes, Opt. Express 16(23), 19201 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    X. Brokmann, L. Coolen, J. P. Hermier, and M. Dahan, Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface, Chem. Phys. 318(1–2), 91 (2005)CrossRefGoogle Scholar
  26. 26.
    Q. A. Li, X. J. Chen, Y. Xu, S. Lan, H. Y. Liu, Q. F. Dai, and L. J. Wu, Photoluminescence properties of the CdSe quantum dots accompanied with rotation of the defocused wide-field fluorescence images, J. Phys. Chem. C 114(32), 13427 (2010)CrossRefGoogle Scholar
  27. 27.
    W. D. Sheng, M. Korkusinski, A. D. Guclu, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Electronic and optical properties of semiconductor and graphene quantum dots, Front. Phys. 7(3), 328 (2012)CrossRefGoogle Scholar
  28. 28.
    J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, Imaging and time-resolved spectroscopy of single molecules at an interface, Science 272(5259), 255 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    P. Dedecker, B. Muls, A. Deres, H. Uji-i, J. Hotta, M. Sliwa, J. P. Soumillion, K. Müllen, J. Enderlein, and J. Hofkens, Defocused wide-field imaging unravels structural and temporal heterogeneity in complex systems, Adv. Mater. 21(10–11), 1079 (2009)CrossRefGoogle Scholar
  30. 30.
    G. F. Zhang, L. T. Xiao, F. Zhang, X. B. Wang, and S. T. Jia, Single molecules reorientation reveals the dynamics of polymer glasses surface, Phys. Chem. Chem. Phys. 12(10), 2308 (2010)CrossRefGoogle Scholar
  31. 31.
    T. Ha, T. Enderle, S. Chemla, R. Selvin, and S. Weiss, Single molecule dynamics studied by polarization modulation, Phys. Rev. Lett. 77(19), 3979 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    R. Y. Chen, G. F. Zhang, C. B. Qin, Y. Gao, L. T. Xiao, and S. T. Jia, Modification of single molecule fluorescence using external fields, Front. Phys. 12(5), 128101 (2017)CrossRefGoogle Scholar
  33. 33.
    A. L. Efros, Luminescence polarization of CdSe microcrystals, Phys. Rev. B 46(12), 7448 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    A. L. Efros and A. V. Rodina, Band-edge absorption and luminescence of nonspherical nanometer-size crystals, Phys. Rev. B 47(15), 10005 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods, Science 292(5524), 2060 (2001)CrossRefGoogle Scholar
  36. 36.
    H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots, Phys. Rev. B 77(3), 035328 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    D. Montiel and H. Yang, Observation of correlated emission intensity and polarization fluctuations in single CdSe/ZnS quantum dots, J. Phys. Chem. A 112(39), 9352 (2008)CrossRefGoogle Scholar
  38. 38.
    C. Lethiec, F. Pisanello, L. Carbone, A. Bramati, L. Coolen, and A. Maitre, Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-inrods, New J. Phys. 16(9), 093014 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    S. Vezzoli, M. Manceau, G. Lemenager, Q. Glorieux, E. Giacobino, L. Carbone, M. De Vittorio, and A. Bramati, Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature, ACS Nano 9(8), 7992 (2015)CrossRefGoogle Scholar
  40. 40.
    K. T. Early, K. D. McCarthy, M. Y. Odoi, P. K. Sudeep, T. Emrick, and M. D. Barnes, Linear dipole behavior in single CdSe-oligo(phenylene vinylene) nanostructures, ACS Nano 3(2), 453 (2009)CrossRefGoogle Scholar
  41. 41.
    K. T. Early, P. K. Sudeep, T. Emrick, and M. D. Barnes, Polarization-driven stark shifts in quantum dot luminescence from single CdSe/oligo-PPV nanoparticles, Nano Lett. 10(5), 1754 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    N. I. Hammer, K. T. Early, K. Sill, M. Y. Odoi, T. Emrick, and M. D. Barnes, Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures, J. Phys. Chem. B 110(29), 14167 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Y. Odoi, K. T. Early, R. Tangirala, P. K. Sudeep, T. Emrick, and M. D. Barnes, Probing multiexcitonic emission in single CdSe-oligo(phenylenevinylene) composite nanostructures, J. Phys. Chem. C 113(31), 13462 (2009)CrossRefGoogle Scholar
  44. 44.
    S. Rühle, Tabulated values of the shockley-queisser limit for single junction solar cells, Sol. Energy 130, 139 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    A. Deres, G. A. Floudas, K. Müllen, M. Van der Auweraer, F. De Schryver, J. Enderlein, H. Uji-i, and J. Hofkens, The origin of heterogeneity of polymer dynamics near the glass temperature as probed by defocused imaging, Macromolecules 44(24), 9703 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    M. Böhmer and J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy, J. Opt. Soc. Am. B 20(3), 554 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    D. Patra, I. Gregor, and J. Enderlein, Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies, J. Phys. Chem. A 108(33), 6836 (2004)CrossRefGoogle Scholar
  48. 48.
    T. Ihara, R. Sato, T. Teranishi, and Y. Kanemitsu, Delocalized and localized charged excitons in single CdSe/CdS dot-in-rods revealed by polarized photoluminescence blinking, Phys. Rev. B 90(3), 035309 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    F. Hu, B. Lv, C. Yin, C. Zhang, X. Wang, B. Lounis, and M. Xiao, Carrier multiplication in a single semiconductor nanocrystal, Phys. Rev. Lett. 116(10), 106404 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    D. Patra, I. Gregor, J. Enderlein, and M. Sauer, Defocused imaging of quantum-dot angular distribution of radiation, Appl. Phys. Lett. 87(10), 101103 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    R. Schuster, M. Barth, A. Gruber, and F. Cichos, Defocused wide field fluorescence imaging of single CdSe/ZnS quantum dots, Chem. Phys. Lett. 413(4–6), 280 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B 54(7), 4843 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots, Nature 479(7372), 203 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    L. W. Wang, Calculating the influence of external charges on the photoluminescence of a CdSe quantum dot, J. Phys. Chem. B 105(12), 2360 (2001)CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guo-Feng Zhang
    • 1
    • 4
    Email author
  • Yong-Gang Peng
    • 2
  • Hai-Qing Xie
    • 3
  • Bin Li
    • 1
  • Zhi-Jie Li
    • 1
  • Chang-Gang Yang
    • 1
  • Wen-Li Guo
    • 1
  • Cheng-Bing Qin
    • 1
    • 4
  • Rui-Yun Chen
    • 1
    • 4
  • Yan Gao
    • 1
    • 4
  • Yu-Jun Zheng
    • 2
  • Lian-Tuan Xiao
    • 1
    • 4
    Email author
  • Suo-Tang Jia
    • 1
    • 4
  1. 1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser SpectroscopyShanxi UniversityTaiyuanChina
  2. 2.School of PhysicsShandong UniversityJinanChina
  3. 3.Department of PhysicsTaiyuan Normal UniversityJinzhongChina
  4. 4.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina

Personalised recommendations